diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch) | |
tree | 725a7d43dc1687edf95bc36d39bebc3000f1de8f /Modern_Physics_By_G.Aruldas/Chapter9.ipynb | |
parent | 62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff) | |
download | Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2 Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip |
added books
Diffstat (limited to 'Modern_Physics_By_G.Aruldas/Chapter9.ipynb')
-rwxr-xr-x | Modern_Physics_By_G.Aruldas/Chapter9.ipynb | 418 |
1 files changed, 418 insertions, 0 deletions
diff --git a/Modern_Physics_By_G.Aruldas/Chapter9.ipynb b/Modern_Physics_By_G.Aruldas/Chapter9.ipynb new file mode 100755 index 00000000..fa1ac5e9 --- /dev/null +++ b/Modern_Physics_By_G.Aruldas/Chapter9.ipynb @@ -0,0 +1,418 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d1e925900cff60559a1ba3f62c2c267140215c90675c4dba42b1a473becca175"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "9: Molecular spectra"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.1, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "twoB=3.8626; #average spacing(per cm)\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "NA=6.022*10**23; #avagadro number(atoms/mole)\n",
+ "mC=0.012; #isotopic mass of C(kg/mol)\n",
+ "mO=0.016; #isotopic mass of O(kg/mol)\n",
+ "\n",
+ "#Calculation\n",
+ "B=(twoB/2)*100; #average spacing(per m)\n",
+ "I=h/(8*math.pi**2*B*c); \n",
+ "mew=mC*mO/((mC+mO)*NA); #reduced mass(kg)\n",
+ "r=math.sqrt(I/mew); #bond length(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "bond length is 1.128 *10**-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.2, Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant(J/K)\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=10**-2; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E=3*k*T/2; #kinetic energy(J)\n",
+ "deltaE=h*c/lamda; #energy seperation(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy is\",E,\"J\"\n",
+ "print \"energy seperation is\",round(deltaE*10**23),\"*10**-23 J\"\n",
+ "print \"deltaE is much smaller than E. hence substantial number of molecules will be there\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "kinetic energy is 6.21e-21 J\n",
+ "energy seperation is 2.0 *10**-23 J\n",
+ "deltaE is much smaller than E. hence substantial number of molecules will be there\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.3, Page number 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ff=1876.06; #frequency of fundamental(per cm)\n",
+ "fo=3724.2; #frequency of 1st overtone(per cm)\n",
+ "\n",
+ "#Calculation\n",
+ "#ff=vebar*(1-(2*xe)) and fo=2*vebar*(1-(3*xe)). on solcing we get\n",
+ "vebar=1903.98; #equilibrium vibration frequency(per cm)\n",
+ "xe=7.33*10**-3; #anharmonicity constant\n",
+ "E=vebar/2; #zero point energy(per cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"equilibrium vibration frequency is\",vebar,\"per cm\"\n",
+ "print \"anharmonicity constant is\",round(xe*10**3,2),\"*10**-3\"\n",
+ "print \"zero point energy is\",round(E),\"per cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "equilibrium vibration frequency is 1903.98 per cm\n",
+ "anharmonicity constant is 7.33 *10**-3\n",
+ "zero point energy is 952.0 per cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.4, Page number 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "m1=1.0087; #mass of 1H(u)\n",
+ "m2=35.453; #mass of Cl(u)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda0=3.465*10**-6; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "mew=m*m1*m2/(m1+m2); #reduced mass(kg)\n",
+ "k=4*math.pi**2*mew*(c/lamda0)**2; #force constant(N/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"force constant is\",round(k,1),\"N/m\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "force constant is 484.7 N/m\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.5, Page number 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamdae=4358.3*10**-8; #excited wavelength(cm)\n",
+ "lamda=4768.5*10**-8; #wavelength(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "wne=1/lamdae; #wave number of exciting radiation(per cm)\n",
+ "wn=1/lamda; #wave number of Raman line(per cm)\n",
+ "new=wne-wn; #vibrational frequency(per cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"vibrational frequency is\",round(new),\"per cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "vibrational frequency is 1974.0 per cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.6, Page number 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "sixB=346; #1st rotational Raman line(per cm)\n",
+ "m1=1.673*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "m2=m1;\n",
+ "B=(sixB/6)*100; #average spacing(per m)\n",
+ "I=h/(8*math.pi**2*B*c); \n",
+ "mew=m1*m2/(m1+m2); #reduced mass(kg)\n",
+ "r=math.sqrt(I/mew); #bond length(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "bond length is 0.762 *10**-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.7, Page number 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "gN=5.585; #value of gN\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "new=120*10**6; #frequency(Hz)\n",
+ "mewn=5.0508*10**-27;\n",
+ "\n",
+ "#Calculation\n",
+ "B0=h*new/(gN*mewn); #magnetic field strength(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field strength is\",round(B0,3),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic field strength is 2.819 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.8, Page number 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "gN=5.585; #value of gN\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "mewn=5.0508*10**-27;\n",
+ "B0=1.65; #magnetic field(T)\n",
+ "new=510*10**6; #frequency separation(Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "new0=gN*mewn*B0/h;\n",
+ "delta=new/new0; #chemical shift(ppm)\n",
+ "\n",
+ "#Result\n",
+ "print \"chemical shift is\",round(delta,2),\"ppm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "chemical shift is 7.26 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.10, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "new=35*10**9; #frequency(Hz)\n",
+ "mewB=9.27*10**-24;\n",
+ "B0=1.3; #magnetic field(T)\n",
+ "\n",
+ "#Calculation\n",
+ "g=h*new/(mewB*B0); #electron g-factor\n",
+ "\n",
+ "#Result\n",
+ "print \"electron g-factor is\",round(g,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron g-factor is 1.924\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |