From c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Modern_Physics_By_G.Aruldas/Chapter9.ipynb | 418 +++++++++++++++++++++++++++++ 1 file changed, 418 insertions(+) create mode 100755 Modern_Physics_By_G.Aruldas/Chapter9.ipynb (limited to 'Modern_Physics_By_G.Aruldas/Chapter9.ipynb') diff --git a/Modern_Physics_By_G.Aruldas/Chapter9.ipynb b/Modern_Physics_By_G.Aruldas/Chapter9.ipynb new file mode 100755 index 00000000..fa1ac5e9 --- /dev/null +++ b/Modern_Physics_By_G.Aruldas/Chapter9.ipynb @@ -0,0 +1,418 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:d1e925900cff60559a1ba3f62c2c267140215c90675c4dba42b1a473becca175" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "9: Molecular spectra" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.1, Page number 172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "twoB=3.8626; #average spacing(per cm)\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #speed of light(m/s)\n", + "NA=6.022*10**23; #avagadro number(atoms/mole)\n", + "mC=0.012; #isotopic mass of C(kg/mol)\n", + "mO=0.016; #isotopic mass of O(kg/mol)\n", + "\n", + "#Calculation\n", + "B=(twoB/2)*100; #average spacing(per m)\n", + "I=h/(8*math.pi**2*B*c); \n", + "mew=mC*mO/((mC+mO)*NA); #reduced mass(kg)\n", + "r=math.sqrt(I/mew); #bond length(m)\n", + "\n", + "#Result\n", + "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "bond length is 1.128 *10**-10 m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.2, Page number 173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "T=300; #temperature(K)\n", + "k=1.38*10**-23; #boltzmann constant(J/K)\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #speed of light(m/s)\n", + "lamda=10**-2; #wavelength(m)\n", + "\n", + "#Calculation\n", + "E=3*k*T/2; #kinetic energy(J)\n", + "deltaE=h*c/lamda; #energy seperation(J)\n", + "\n", + "#Result\n", + "print \"kinetic energy is\",E,\"J\"\n", + "print \"energy seperation is\",round(deltaE*10**23),\"*10**-23 J\"\n", + "print \"deltaE is much smaller than E. hence substantial number of molecules will be there\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kinetic energy is 6.21e-21 J\n", + "energy seperation is 2.0 *10**-23 J\n", + "deltaE is much smaller than E. hence substantial number of molecules will be there\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.3, Page number 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ff=1876.06; #frequency of fundamental(per cm)\n", + "fo=3724.2; #frequency of 1st overtone(per cm)\n", + "\n", + "#Calculation\n", + "#ff=vebar*(1-(2*xe)) and fo=2*vebar*(1-(3*xe)). on solcing we get\n", + "vebar=1903.98; #equilibrium vibration frequency(per cm)\n", + "xe=7.33*10**-3; #anharmonicity constant\n", + "E=vebar/2; #zero point energy(per cm)\n", + "\n", + "#Result\n", + "print \"equilibrium vibration frequency is\",vebar,\"per cm\"\n", + "print \"anharmonicity constant is\",round(xe*10**3,2),\"*10**-3\"\n", + "print \"zero point energy is\",round(E),\"per cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "equilibrium vibration frequency is 1903.98 per cm\n", + "anharmonicity constant is 7.33 *10**-3\n", + "zero point energy is 952.0 per cm\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.4, Page number 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=1.67*10**-27; #mass of proton(kg)\n", + "m1=1.0087; #mass of 1H(u)\n", + "m2=35.453; #mass of Cl(u)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda0=3.465*10**-6; #wavelength(m)\n", + "\n", + "#Calculation\n", + "mew=m*m1*m2/(m1+m2); #reduced mass(kg)\n", + "k=4*math.pi**2*mew*(c/lamda0)**2; #force constant(N/m)\n", + "\n", + "#Result\n", + "print \"force constant is\",round(k,1),\"N/m\"\n", + "print \"answer varies due to rounding off errors\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "force constant is 484.7 N/m\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.5, Page number 187" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamdae=4358.3*10**-8; #excited wavelength(cm)\n", + "lamda=4768.5*10**-8; #wavelength(cm)\n", + "\n", + "#Calculation\n", + "wne=1/lamdae; #wave number of exciting radiation(per cm)\n", + "wn=1/lamda; #wave number of Raman line(per cm)\n", + "new=wne-wn; #vibrational frequency(per cm)\n", + "\n", + "#Result\n", + "print \"vibrational frequency is\",round(new),\"per cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "vibrational frequency is 1974.0 per cm\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.6, Page number 188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #speed of light(m/s)\n", + "sixB=346; #1st rotational Raman line(per cm)\n", + "m1=1.673*10**-27; #mass of proton(kg)\n", + "\n", + "#Calculation\n", + "m2=m1;\n", + "B=(sixB/6)*100; #average spacing(per m)\n", + "I=h/(8*math.pi**2*B*c); \n", + "mew=m1*m2/(m1+m2); #reduced mass(kg)\n", + "r=math.sqrt(I/mew); #bond length(m)\n", + "\n", + "#Result\n", + "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "bond length is 0.762 *10**-10 m\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.7, Page number 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "gN=5.585; #value of gN\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "new=120*10**6; #frequency(Hz)\n", + "mewn=5.0508*10**-27;\n", + "\n", + "#Calculation\n", + "B0=h*new/(gN*mewn); #magnetic field strength(T)\n", + "\n", + "#Result\n", + "print \"magnetic field strength is\",round(B0,3),\"T\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnetic field strength is 2.819 T\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.8, Page number 194" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "gN=5.585; #value of gN\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "mewn=5.0508*10**-27;\n", + "B0=1.65; #magnetic field(T)\n", + "new=510*10**6; #frequency separation(Hz)\n", + "\n", + "#Calculation\n", + "new0=gN*mewn*B0/h;\n", + "delta=new/new0; #chemical shift(ppm)\n", + "\n", + "#Result\n", + "print \"chemical shift is\",round(delta,2),\"ppm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "chemical shift is 7.26 ppm\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 9.10, Page number 198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "new=35*10**9; #frequency(Hz)\n", + "mewB=9.27*10**-24;\n", + "B0=1.3; #magnetic field(T)\n", + "\n", + "#Calculation\n", + "g=h*new/(mewB*B0); #electron g-factor\n", + "\n", + "#Result\n", + "print \"electron g-factor is\",round(g,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "electron g-factor is 1.924\n" + ] + } + ], + "prompt_number": 26 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit