summaryrefslogtreecommitdiff
path: root/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb')
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter2_1.ipynb295
1 files changed, 295 insertions, 0 deletions
diff --git a/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb
new file mode 100755
index 00000000..59d9ea57
--- /dev/null
+++ b/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb
@@ -0,0 +1,295 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f048d58df41f2578c151ef59f03652004b6758b9e666d170255be2c66115bfe2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "2: Particle nature of radiation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.1, Page number 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "new=100*10**6; #frequency(Hz)\n",
+ "P=100*10**3; #power(watt)\n",
+ "\n",
+ "#Calculation\n",
+ "E=h*new; #quantum of energy(J)\n",
+ "n=P/E; #number of quanta emitted(per sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"number of quanta emitted is\",round(n/10**29,2),\"*10**29 per sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "number of quanta emitted is 15.09 *10**29 per sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.2, Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=400*10**-9; #wavelength(m)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "w0=2.28; #work function(eV)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "E=h*c/(lamda*e); #energy(eV)\n",
+ "KEmax=E-w0; #maximum kinetic energy(eV)\n",
+ "v2=2*KEmax*e/m; \n",
+ "v=math.sqrt(v2); #velocity(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum kinetic energy is\",round(KEmax,3),\"eV\"\n",
+ "print \"velocity of photoelectrons is\",round(v/10**5,2),\"*10**5 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum kinetic energy is 0.826 eV\n",
+ "velocity of photoelectrons is 5.39 *10**5 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.3, Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=2000*10**-10; #wavelength(m)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "w0=4.2; #work function(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda0=h*c/(w0*e); #cut off wavelength(m)\n",
+ "E=h*c/(lamda*e); #energy(eV)\n",
+ "sp=E-w0; #stopping potential(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"cut off wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
+ "print \"stopping potential is\",round(sp,2),\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cut off wavelength is 2958 angstrom\n",
+ "stopping potential is 2.01 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.4, Page number 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=0.2*10**-9; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "p=h/lamda; #momentum(kg m/s)\n",
+ "m=p/c; #effective mass(kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"momentum is\",round(p*10**24,1),\"*10**-24 kg m/s\"\n",
+ "print \"effective mass is\",round(m*10**32,1),\"*10**-32 kg\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "momentum is 3.3 *10**-24 kg m/s\n",
+ "effective mass is 1.1 *10**-32 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.5, Page number 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=0.15; #wavelength(nm)\n",
+ "m0=9.1*10**-31; #mass of electron(kg)\n",
+ "theta1=0; #scattering angle1(degrees)\n",
+ "theta2=90; #scattering angle2(degrees)\n",
+ "theta3=180; #scattering angle3(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #scattering angle1(radian)\n",
+ "theta2=theta2*math.pi/180; #scattering angle2(radian)\n",
+ "theta3=theta3*math.pi/180; #scattering angle3(radian)\n",
+ "lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)\n",
+ "lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)\n",
+ "lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength at 0 degrees is\",lamda_dash1,\"nm\"\n",
+ "print \"wavelength at 90 degrees is\",round(lamda_dash2,3),\"nm\"\n",
+ "print \"wavelength at 180 degrees is\",round(lamda_dash3,3),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength at 0 degrees is 0.15 nm\n",
+ "wavelength at 90 degrees is 0.152 nm\n",
+ "wavelength at 180 degrees is 0.155 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.6, Page number 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "E=2*0.511*10**6; #rest energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h*c/(E*e); #wavelength of photon(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of photon is\",round(lamda*10**12,2),\"*10**-12 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of photon is 1.22 *10**-12 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file