From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb | 295 +++++++++++++++++++++++++++ 1 file changed, 295 insertions(+) create mode 100755 Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb (limited to 'Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb') diff --git a/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb new file mode 100755 index 00000000..59d9ea57 --- /dev/null +++ b/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb @@ -0,0 +1,295 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:f048d58df41f2578c151ef59f03652004b6758b9e666d170255be2c66115bfe2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "2: Particle nature of radiation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 2.1, Page number 28" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "new=100*10**6; #frequency(Hz)\n", + "P=100*10**3; #power(watt)\n", + "\n", + "#Calculation\n", + "E=h*new; #quantum of energy(J)\n", + "n=P/E; #number of quanta emitted(per sec)\n", + "\n", + "#Result\n", + "print \"number of quanta emitted is\",round(n/10**29,2),\"*10**29 per sec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "number of quanta emitted is 15.09 *10**29 per sec\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 2.2, Page number 31" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda=400*10**-9; #wavelength(m)\n", + "e=1.6*10**-19; #conversion factor from J to eV\n", + "w0=2.28; #work function(eV)\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "\n", + "#Calculation\n", + "E=h*c/(lamda*e); #energy(eV)\n", + "KEmax=E-w0; #maximum kinetic energy(eV)\n", + "v2=2*KEmax*e/m; \n", + "v=math.sqrt(v2); #velocity(m/s)\n", + "\n", + "#Result\n", + "print \"maximum kinetic energy is\",round(KEmax,3),\"eV\"\n", + "print \"velocity of photoelectrons is\",round(v/10**5,2),\"*10**5 m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum kinetic energy is 0.826 eV\n", + "velocity of photoelectrons is 5.39 *10**5 m/s\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 2.3, Page number 31" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda=2000*10**-10; #wavelength(m)\n", + "e=1.6*10**-19; #conversion factor from J to eV\n", + "w0=4.2; #work function(eV)\n", + "\n", + "#Calculation\n", + "lamda0=h*c/(w0*e); #cut off wavelength(m)\n", + "E=h*c/(lamda*e); #energy(eV)\n", + "sp=E-w0; #stopping potential(eV)\n", + "\n", + "#Result\n", + "print \"cut off wavelength is\",int(lamda0*10**10),\"angstrom\"\n", + "print \"stopping potential is\",round(sp,2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "cut off wavelength is 2958 angstrom\n", + "stopping potential is 2.01 V\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 2.4, Page number 33" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda=0.2*10**-9; #wavelength(m)\n", + "\n", + "#Calculation\n", + "p=h/lamda; #momentum(kg m/s)\n", + "m=p/c; #effective mass(kg)\n", + "\n", + "#Result\n", + "print \"momentum is\",round(p*10**24,1),\"*10**-24 kg m/s\"\n", + "print \"effective mass is\",round(m*10**32,1),\"*10**-32 kg\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "momentum is 3.3 *10**-24 kg m/s\n", + "effective mass is 1.1 *10**-32 kg\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 2.5, Page number 35" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda=0.15; #wavelength(nm)\n", + "m0=9.1*10**-31; #mass of electron(kg)\n", + "theta1=0; #scattering angle1(degrees)\n", + "theta2=90; #scattering angle2(degrees)\n", + "theta3=180; #scattering angle3(degrees)\n", + "\n", + "#Calculation\n", + "theta1=theta1*math.pi/180; #scattering angle1(radian)\n", + "theta2=theta2*math.pi/180; #scattering angle2(radian)\n", + "theta3=theta3*math.pi/180; #scattering angle3(radian)\n", + "lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)\n", + "lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)\n", + "lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)\n", + "\n", + "#Result\n", + "print \"wavelength at 0 degrees is\",lamda_dash1,\"nm\"\n", + "print \"wavelength at 90 degrees is\",round(lamda_dash2,3),\"nm\"\n", + "print \"wavelength at 180 degrees is\",round(lamda_dash3,3),\"nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength at 0 degrees is 0.15 nm\n", + "wavelength at 90 degrees is 0.152 nm\n", + "wavelength at 180 degrees is 0.155 nm\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 2.6, Page number 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "e=1.6*10**-19; #conversion factor from J to eV\n", + "E=2*0.511*10**6; #rest energy(eV)\n", + "\n", + "#Calculation\n", + "lamda=h*c/(E*e); #wavelength of photon(m)\n", + "\n", + "#Result\n", + "print \"wavelength of photon is\",round(lamda*10**12,2),\"*10**-12 m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of photon is 1.22 *10**-12 m\n" + ] + } + ], + "prompt_number": 21 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit