diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Modern_Physics/Chapter2.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Modern_Physics/Chapter2.ipynb')
-rwxr-xr-x | Modern_Physics/Chapter2.ipynb | 651 |
1 files changed, 0 insertions, 651 deletions
diff --git a/Modern_Physics/Chapter2.ipynb b/Modern_Physics/Chapter2.ipynb deleted file mode 100755 index 0d0fc247..00000000 --- a/Modern_Physics/Chapter2.ipynb +++ /dev/null @@ -1,651 +0,0 @@ -{ - "metadata": { - "name": "Chapter2", - "signature": "sha256:be87f6a340484dd1a4e5b8f9343e232694681e2bed2590e22d8288691c17dddf" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 2:The Special Theory of Relativity" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.1, Page 22" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of varible\n", - "v1=60.0; v2=40.0 #Velocities of cars wrt to observer in km/hr\n", - "\n", - "#calculation\n", - "vr=v1-v2; #relative velocity\n", - "\n", - "#result\n", - "print\"The value of relative velocity in km/h. is\",round(vr,3);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The value of relative velocity in km/h. is 20.0\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2, Page 22" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import atan, pi\n", - "import numpy as np\n", - "Va_w=[320.0,0.0]; Vw_g=[0.0, 65.0]; #Vp/q=[X Y]=>velocity of object p wrt q along X(east) and Y(north) directions.\n", - "\n", - "#calculation\n", - "Va_g=Va_w + Vw_g; #net velocity\n", - "k=np.linalg.norm(Va_g) #magnitude\n", - "s=atan(Va_g[3]/Va_g[0])*180.0/pi; #angle in rad*180/pi for conversion to degrees\n", - "\n", - "#result\n", - "print \"the velocity in x direction in Km/h is\", Va_w[0],\"in y direction in km/h is\",Vw_g[1]\n", - "print\"The magnitude of velocity Va/g(airplane wrt ground) in Km/h is\",round(k,3),\" at \",round(s,3),\" degrees north of east.\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnitude of velocity Va/g(airplane wrt ground) in Km/h is 326.535 at 11.482 degrees north of east.\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.4, Page 28" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "Lo=100.0*(10**3);c=3.0*(10**8); #Given values//all the quantities are converted to SI units \n", - "d=2.2*(10**-6); #time between its birth and decay\n", - "\n", - "#calculation\n", - "t=Lo/c #where Lo is the distance from top of atmosphere to the Earth. c is the velocity of light. t is the time taken\n", - "u=sqrt(1-((d/t)**2)); # using time dilation fromula for finding u where u is the minimum velocity in terms of c;\n", - "\n", - "#result\n", - "print\"Hence the minimum speed required in c is\",round(u,6);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Hence the minimum speed required in c is 0.999978\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.5, Page 30" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#intiation of variable\n", - "from math import sqrt\n", - "Lo=100.0*(10**3); #Lo is converted to Km\n", - "u=0.999978; #//u/c is taken as u since u is represented in terms of c. \n", - "\n", - "#calculation\n", - "L=Lo*(sqrt(1-u**2)); # from the length contraction formula\n", - "\n", - "#result\n", - "print\"Hence the apparent thickness of the Earth's surface in metres. is\",round(L,3)\n", - "print\"answer is slightly different in the book\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Hence the apparent thickness of the Earth's surface in metres. is 663.321\n", - "answer is slightly different in the book\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.6, Page 32" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "L=65.0; c=3*10**8;u=0.8*c; \n", - "\n", - "#calculation\n", - "t=L/u ; #The value of time taken as measured by the observer\n", - "\n", - "#result\n", - "print\"The time for rocket to pass a point as measured by O in musec is \",round(t*10**6,3); #The value of time taken as measured by the observer\n", - "\n", - "#partb\n", - "Do=65.0; #given length\n", - "Lo= L/sqrt(1-(u/c)**2); #contracted length of rocket\n", - "\n", - "#result\n", - "print\"Actual length according to O is \",round(Lo,3);\n", - "\n", - "#partc\n", - "D=Do*(sqrt(1-(u/c)**2)); #contracted length of platform.\n", - "\n", - "#result\n", - "print\"Contracted length according to O'' is\",round(D,3);\n", - "\n", - "#partd\n", - "t1=Lo/u; #time needed to pass according to O'.\n", - "print \"Time taken according to O is \",t1\n", - "\n", - "#part 3\n", - "t2=(Lo-D)/u; #time intervals between the two instances\n", - "print\"Time taken according to O'' is \",t2;\n", - "print'The value of t1 and t2 does not match with textbook exactly';" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The time for rocket to pass a point as measured by O in musec is 0.271\n", - "Actual length according to O is 108.333\n", - "Contracted length according to O'' is 39.0\n", - "Time taken according to O is 4.51388888889e-07\n", - "Time taken according to O'' is 2.88888888889e-07\n", - "The value of t1 and t2 did not match\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.7, Page 35" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "v1=0.6; u=0.8; c=1.0; # all the values are measured in terms of c hence c=1\n", - "\n", - "#calculation\n", - "v= (v1+u)/(1+(v1*u/c**2));\n", - "\n", - "#result\n", - "print \"The speed of missile as measured by an observer on earth in c is\",round(v,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The speed of missile as measured by an observer on earth in c is 0.946\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.8, Page 37" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "w1=600.0;w2=434.0; # w1=recorded wavelength;w2=actual wavelength\n", - " # c/w1 = c/w2 *(sqrt(1-u/c)/(1+u/c))\n", - " \n", - "#calculation\n", - "k=w2/w1;\n", - "x=(1-k**2)/(1+k**2); #solving for u/c\n", - "\n", - "#result\n", - "print\"The speed of galaxy wrt earth in c is\",round(x,3);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The speed of galaxy wrt earth in c is 0.313\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.9, Page 39" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "v1x=0.6;v1y=0.0;v2x=0.0;v2y=.8;c=1.0; # all the velocities are taken wrt c\n", - "v21x=(v2x-v1x)/(1-(v1x*v2x/c**2)); #using lorentz velocity transformation\n", - "v21y=(v2y*(sqrt(1-(v1x*c)**2)/c**2))/(1-v1y*v2y/c**2) \n", - "\n", - "#result\n", - "print\"The velocity of rocket 2 wrt rocket 1 along x and y directions is\",round(v21x,3),\" c &\", round(v21y,3),\"c respectively\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of rocket 2 wrt rocket 1 along x and y directions is -0.6 c & 0.64 c respectively\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.10, Page 40" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "u=0.8*c;L=65.0;c=3.0*10**8; #all values are in terms of c\n", - "t=u*L/(c**2*(sqrt(1-((u/c)**2)))); #from the equation 2.31 \n", - "\n", - "#result\n", - "print\"The time interval between the events is\",t, \"sec which equals\",round(t*10**6,3),\"musec.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The time interval between the events is 2.88888888889e-07 sec which equals 0.289 musec.\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.11, Page 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "m=1.67*10**-27;c= 3*10**8;v=0.86*c; #all the given values and constants\n", - "\n", - "#calculation\n", - "p=m*v/(sqrt(1-((v/c)**2))); # in terms of Kgm/sec\n", - "\n", - "#result\n", - "print\"The value of momentum was found out to be in Kg-m/sec.\\n\",p;\n", - "\n", - "#part 2\n", - "c=938.0;v=0.86*c;mc2=938.0 # all the energies in MeV where mc2= value of m*c^2\n", - "pc=(mc2*(v/c))/(sqrt(1-((v/c)**2))); #expressing in terms of Mev\n", - "\n", - "#result\n", - "print\"The value of momentum was found out to be in Mev.\",round(pc,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The value of momentum was found out to be in Kg-m/sec.\n", - "8.44336739668e-19\n", - "The value of momentum was found out to be in Mev. 1580.814\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.12, Page 47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "pc=1580.0; mc2=938.0;E0=938.0; # all the energies in MeV mc2=m*c^2 and pc=p*c\n", - "\n", - "#result\n", - "E=sqrt(pc**2+mc2**2); \n", - "K=E-E0; #value of possible kinetic energy\n", - "\n", - "#result\n", - "print\"The relativistic total energy in MeV. is\",round(E,3); #value of Energy E\n", - "print\"The kinetic energy of the proton in MeV.\",round(K,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The relativistic total energy in MeV. is 1837.456\n", - "The kinetic energy of the proton in MeV. 899.456\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.13, Page 47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "E=10.51; mc2=0.511; #all the values are in MeV\n", - "\n", - "#calculation\n", - "p=sqrt(E**2-mc2**2); #momentum of the electron\n", - "v=sqrt(1-(mc2/E)**2); #velocity in terms of c\n", - "\n", - "#result\n", - "print\"The momentum of electron in MeV/c is\",round(p,3); \n", - "print\"The velocity of electron in c is\",round(v,5);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The momentum of electron in MeV/c is 10.498\n", - "The velocity of electron in c is 0.99882\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.14, Page 47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "k=50;mc2=0.511*10**-3;c=3.0*10**8; # all the values of energy are in GeV and c is in SI units\n", - "\n", - "#calculation\n", - "v=sqrt(1-(1/(1+(k/mc2))**2)); #speed of the electron in terms of c\n", - "k=c-(v*c); #difference in velocities\n", - "\n", - "#result\n", - "print\"Speed of the electron as a fraction of c*10^-12 is.\",round(v*10**12,3); # v=(v*10^12)*10^-12; so as to obtain desired accuracy in the result\n", - "print\"The difference in velocities in cm/s.\",round(k*10**2,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Speed of the electron as a fraction of c*10^-12 is. 9.99999999948e+11\n", - "The difference in velocities in cm/s. 1.567\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.15, Page 48" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt, pi\n", - "r=1.5*10**11; I=1.4*10**3; #radius and intensity of sun\n", - "\n", - "#calculation\n", - "s=4*pi*r**2 #surface area of the sun\n", - "Pr=s*I # Power radiated in J/sec\n", - "c=3.0*10**8; #velocity of light\n", - "m=Pr/c**2 #rate of decrease of mass\n", - "m=round(m,2)\n", - "\n", - "#result\n", - "print\"The rate of decrease in mass of the sun in kg/sec. is %.1e\" %m;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The rate of decrease in mass of the sun in kg/sec. is 4.4e+09\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.16, Page 48" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import pi, sqrt\n", - "K=325; mkc2=498; #kinetic energy and rest mass energy of kaons\n", - "mpic=140.0; #given value\n", - "\n", - "#calculation\n", - "Ek=K+mkc2; \n", - "pkc=sqrt(Ek**2-mkc2**2); \n", - "#consider the law of conservation of energy which yields Ek=sqrt(p1c^2+mpic^2)+sqrt(p2c^2+mpic^2)\n", - "#The above equations (4th degree,hence no direct methods)can be solved by assuming the value of p2c=0.\n", - "p1c=sqrt(Ek**2-(2*mpic*Ek));\n", - "#consider the law of conservation of momentum. which gives p1c+p2c=pkc implies\n", - "p2c=pkc-p1c;\n", - "k1=(sqrt(p1c**2+(mpic**2))-mpic); #corresponding kinetic energies\n", - "k2=(sqrt((p2c**2)+(mpic**2))-mpic);\n", - "\n", - "#result\n", - "print\"The corresponding kinetic energies of the pions are\", k1,\" MeV and\",round(k2,3),\" MeV.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The corresponding kinetic energies of the pions are 543.0 MeV and 0.627 MeV.\n" - ] - } - ], - "prompt_number": 49 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.17, Page 49" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "mpc2=938.0;c=3.0*10**8; #mpc2=mp*c^2,mp=mass of proton\n", - "\n", - "#calculation\n", - "Et=4*mpc2; #final total energy\n", - "E1=Et/2;E2=E1; #applying conservation of momentum and energy\n", - "v2=c*sqrt(1-(mpc2/E1)**2); #lorentz transformation\n", - "u=v2;v=(v2+u)/(1+(u*v2/c**2)); \n", - "E=mpc2/(sqrt(1-(v/c)**2));\n", - "K=E-mpc2;\n", - "\n", - "#result\n", - "print\"The threshold kinetic energy in Gev\",round(K/10**3,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The threshold kinetic energy in Gev 5.628\n" - ] - } - ], - "prompt_number": 50 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |