diff options
author | debashisdeb | 2014-06-21 00:52:25 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-21 00:52:25 +0530 |
commit | 7c756fcc12d21693818e58f6936cab5b7c112868 (patch) | |
tree | 009cb02ec85f4a75ac7b64239751f15361df2bfe /Microwave_and_Radar_Engineering/Chapter_5.ipynb | |
parent | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (diff) | |
download | Python-Textbook-Companions-7c756fcc12d21693818e58f6936cab5b7c112868.tar.gz Python-Textbook-Companions-7c756fcc12d21693818e58f6936cab5b7c112868.tar.bz2 Python-Textbook-Companions-7c756fcc12d21693818e58f6936cab5b7c112868.zip |
Removed Problem Statements Completely
Diffstat (limited to 'Microwave_and_Radar_Engineering/Chapter_5.ipynb')
-rw-r--r-- | Microwave_and_Radar_Engineering/Chapter_5.ipynb | 387 |
1 files changed, 192 insertions, 195 deletions
diff --git a/Microwave_and_Radar_Engineering/Chapter_5.ipynb b/Microwave_and_Radar_Engineering/Chapter_5.ipynb index 111d3a6e..dae9fa40 100644 --- a/Microwave_and_Radar_Engineering/Chapter_5.ipynb +++ b/Microwave_and_Radar_Engineering/Chapter_5.ipynb @@ -1,196 +1,193 @@ -{
- "metadata": {
- "name": "Chapter 5"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chpater 5:Cavity Resonators"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.1, Page number 174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "a = 3 #radius of circular waveguide(cm)\n",
- "fo = 10*10**9 #frequency for TM011 mode(Hz)\n",
- "P01 = 2.405\n",
- "c = 3*10**10 #velocity of proapagation(m/s)\n",
- "\n",
- "#Calculation\n",
- "d = math.sqrt((math.pi**2)/(((4*math.pi**2)/9)-((P01/a)**2)))\n",
- "\n",
- "#Result\n",
- "print \"The minimum distance between two plates is\",round(d,2),\"cms\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The minimum distance between two plates is 1.62 cms\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.2, Page number 174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Variable declaration\n",
- "#dimensions of resonator\n",
- "a = 2.\n",
- "b = 1.\n",
- "d = 3.\n",
- "#For dominant mode TE101,\n",
- "m = 1.\n",
- "n = 0\n",
- "p = 1.\n",
- "\n",
- "c = 3*10**10 #velocity of propagation(m/s)\n",
- "\n",
- "#Calculation\n",
- "fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n",
- "\n",
- "#Result\n",
- "print \"The lowest resonating frequency of a rectangular cavity resonator is\",round((fo/1E+9),2),\"Ghz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The lowest resonating frequency of a rectangular cavity resonator is 9.01 Ghz\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.3, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "D = 12.5 #diameter of resonator(cm)\n",
- "d = 5 #length of resonator(cm)\n",
- "P01 = 2.405 #dominant mode TM01\n",
- "c = 3*10**10 #velocity of propagation(m/s)\n",
- "\n",
- "#For TM012 mode,\n",
- "m = 1\n",
- "n = 0\n",
- "p = 2\n",
- "\n",
- "#Calculation\n",
- "a = D/2\n",
- "fo = (c/(2*math.pi))*((P01/a)**2+((p*math.pi)/d)**2)**0.5\n",
- "\n",
- "#Result\n",
- "print \"The resonanat frequency of a circular resonator is\",round((fo/1E+9),2),\"GHz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The resonanat frequency of a circular resonator is 6.27 GHz\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.4, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Variable declaration\n",
- "#dimensions of resonator\n",
- "a = 3.\n",
- "b = 2.\n",
- "d = 4.\n",
- "#For dominant mode TE101,\n",
- "m = 1.\n",
- "n = 0\n",
- "p = 1.\n",
- "\n",
- "c = 3*10**10 #velocity of propagation(m/s)\n",
- "\n",
- "#Calculation\n",
- "fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n",
- "\n",
- "#Result\n",
- "print \"The lowest resonating frequency of a circular resonator is\",round((fo/1E+9),2),\"Ghz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The lowest resonating frequency of a circular resonator is 6.25 Ghz\n"
- ]
- }
- ],
- "prompt_number": 15
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:2fe50082340642dd8429d3545371d7b4c451ffac9b445487719541932115a705" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chpater 5:Cavity Resonators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.1, Page number 174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "a = 3 #radius of circular waveguide(cm)\n", + "fo = 10*10**9 #frequency for TM011 mode(Hz)\n", + "P01 = 2.405\n", + "c = 3*10**10 #velocity of proapagation(m/s)\n", + "\n", + "#Calculation\n", + "d = math.sqrt((math.pi**2)/(((4*math.pi**2)/9)-((P01/a)**2)))\n", + "\n", + "#Result\n", + "print \"The minimum distance between two plates is\",round(d,2),\"cms\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum distance between two plates is 1.62 cms\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2, Page number 174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "a = 2.\n", + "b = 1.\n", + "d = 3.\n", + "#For dominant mode TE101,\n", + "m = 1.\n", + "n = 0\n", + "p = 1.\n", + "\n", + "c = 3*10**10 #velocity of propagation(m/s)\n", + "\n", + "#Calculation\n", + "fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n", + "\n", + "#Result\n", + "print \"The lowest resonating frequency of a rectangular cavity resonator is\",round((fo/1E+9),2),\"Ghz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The lowest resonating frequency of a rectangular cavity resonator is 9.01 Ghz\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.3, Page number 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "D = 12.5 #diameter of resonator(cm)\n", + "d = 5 #length of resonator(cm)\n", + "P01 = 2.405 #dominant mode TM01\n", + "c = 3*10**10 #velocity of propagation(m/s)\n", + "\n", + "#For TM012 mode,\n", + "m = 1\n", + "n = 0\n", + "p = 2\n", + "\n", + "#Calculation\n", + "a = D/2\n", + "fo = (c/(2*math.pi))*((P01/a)**2+((p*math.pi)/d)**2)**0.5\n", + "\n", + "#Result\n", + "print \"The resonanat frequency of a circular resonator is\",round((fo/1E+9),2),\"GHz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The resonanat frequency of a circular resonator is 6.27 GHz\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.4, Page number 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "a = 3.\n", + "b = 2.\n", + "d = 4.\n", + "#For dominant mode TE101,\n", + "m = 1.\n", + "n = 0\n", + "p = 1.\n", + "\n", + "c = 3*10**10 #velocity of propagation(m/s)\n", + "\n", + "#Calculation\n", + "fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n", + "\n", + "#Result\n", + "print \"The lowest resonating frequency of a circular resonator is\",round((fo/1E+9),2),\"Ghz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The lowest resonating frequency of a circular resonator is 6.25 Ghz\n" + ] + } + ], + "prompt_number": 15 + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |