summaryrefslogtreecommitdiff
path: root/Material_Science_In_Engineering/ch8.ipynb
diff options
context:
space:
mode:
authorhardythe12014-07-28 14:01:58 +0530
committerhardythe12014-07-28 14:01:58 +0530
commit7876eeaf85f7c020ec1f3530963928cd2bc26a66 (patch)
tree67f4da564402aeb9869eaaf6f1e83ec7f1f75aa9 /Material_Science_In_Engineering/ch8.ipynb
parent1c1ea29e3e213559fef5f928df109b7d17c21f24 (diff)
downloadPython-Textbook-Companions-7876eeaf85f7c020ec1f3530963928cd2bc26a66.tar.gz
Python-Textbook-Companions-7876eeaf85f7c020ec1f3530963928cd2bc26a66.tar.bz2
Python-Textbook-Companions-7876eeaf85f7c020ec1f3530963928cd2bc26a66.zip
adding book
Diffstat (limited to 'Material_Science_In_Engineering/ch8.ipynb')
-rwxr-xr-xMaterial_Science_In_Engineering/ch8.ipynb275
1 files changed, 275 insertions, 0 deletions
diff --git a/Material_Science_In_Engineering/ch8.ipynb b/Material_Science_In_Engineering/ch8.ipynb
new file mode 100755
index 00000000..c6220c7a
--- /dev/null
+++ b/Material_Science_In_Engineering/ch8.ipynb
@@ -0,0 +1,275 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8 : Mechanical Testing"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.1 pageno : 195"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "b = 225.;\t\t\t#in mm\n",
+ "h = 10. \t\t\t#in mm\n",
+ "l = 1100.;\t\t\t#in mm\n",
+ "f1 = 250.;\t\t\t#in N\n",
+ "f2 = 350;\t\t\t#in N at which glass breaks\n",
+ "\n",
+ "# Calculations\n",
+ "m = f1*l/4.;\t\t\t#in N-mm\n",
+ "f = f1/2.; \t\t\t#in N\n",
+ "a = (6*m)/(b*h**2);\t\t\t#in N/mm**2\n",
+ "t = (3*f)/(2*b*h);\t\t\t#in N/sqmm\n",
+ "r = f2*l/4;\t\t\t #in N-mm\n",
+ "i = (b*h**3)/12;\t\t\t#in mm**4\n",
+ "y = h/2;\t \t\t#in mm\n",
+ "mr = r*y/i;\t\t \t#in n/sqmm\n",
+ "\n",
+ "# Results\n",
+ "print \"Flexural Strength (in N/sqmm) = %.2f N/mm**2\"%a\n",
+ "print \"Shear Strength (in N/sqmm) = %3f N/mm**2\"%t\n",
+ "print \"Modulous of Rupture (in N/sqmm) = %.2f N/mm**2\"%mr\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flexural Strength (in N/sqmm) = 18.33 N/mm**2\n",
+ "Shear Strength (in N/sqmm) = 0.083333 N/mm**2\n",
+ "Modulous of Rupture (in N/sqmm) = 25.67 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.2 pageno : 201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "d = 5.; \t\t\t#in mm\n",
+ "\n",
+ "# Calculations\n",
+ "id = 32.5/10;\t\t\t#indentation diameter in mm\n",
+ "p = 30*d**2;\t\t\t#load for steel specimen in kgf\n",
+ "bhn = p/((3.14*d/2)*(d-math.sqrt(d**2-id**2)));\t\t\t#in kgf/sqmm\n",
+ "\n",
+ "# Results\n",
+ "print \"Load P for steel specimen (in kgf) = %.f kgf\"%p\n",
+ "print \"BRINELL HARDNESS NUMBER of the steel specimen = %.1f\"%bhn\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Load P for steel specimen (in kgf) = 750 kgf\n",
+ "BRINELL HARDNESS NUMBER of the steel specimen = 79.6\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.3 pageno : 209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "l = 0.1;\t\t\t#frictinal and windage losses in kgf-m\n",
+ "dr = 5.9;\t\t\t#dial reading in kgf-m\n",
+ "w = 19.33;\t\t\t#weight of hammer in kgf-m\n",
+ "t = 10.;\t\t\t#in mm\n",
+ "ui = 30.;\t\t\t#in kgf-m\n",
+ "a = 160.;\t\t\t#angle in degrees\n",
+ "r = 0.8;\t\t\t#swing radius in m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "u = dr-l;\t \t\t#in kgf-m\n",
+ "d = t/5;\t\t \t#depth of V-notch in mm\n",
+ "te = t-d;\t\t \t #effective thickness in mm\n",
+ "ve = 75.*10*te; \t\t\t#effective volume in cu. mm\n",
+ "vem = ve*10.**-9;\t\t\t#in cu. m\n",
+ "mr = u/vem;\t \t\t#in kgf/sqm\n",
+ "ae = t*te; \t\t\t#effective area of cross section in sqmm\n",
+ "aem = ae*10**-6;\t\t\t#in sqm\n",
+ "is_ = u/aem;\t\t \t#in kg/m\n",
+ "uf = ui-u;\t\t\t#in kgf-m\n",
+ "hf = uf/w;\t\t\t#in m\n",
+ "B = math.degrees(math.acos(1-(uf/(w*r))))\n",
+ "\n",
+ "# Results\n",
+ "print \"Rupture Energy (in kgf-m) = %.1f kgf-m\"%u\n",
+ "print \"Modulous Of Rupture (in kgf/sqm) = %.1e kgf/m**2\"%mr\n",
+ "print \"Notch Imapct Strength (in kg/m) = %.2e kgm\"%is_\n",
+ "print \"Height risen by Hammer (in m) = %.2f m\"%hf\n",
+ "print \"Angle after Breaking the specimen (in degress) = %.1f degrees\"%(B)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rupture Energy (in kgf-m) = 5.8 kgf-m\n",
+ "Modulous Of Rupture (in kgf/sqm) = 9.7e+05 kgf/m**2\n",
+ "Notch Imapct Strength (in kg/m) = 7.25e+04 kgm\n",
+ "Height risen by Hammer (in m) = 1.25 m\n",
+ "Angle after Breaking the specimen (in degress) = 124.4 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.4 pageno : 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "a_m = 70.; \t \t\t#mean stress in Mpa\n",
+ "a_r = 210.;\t \t \t#stress amplitude in Mpa\n",
+ "\n",
+ "# Calculations\n",
+ "a_max = ((2*a_m)+a_r)/2;\t\t\t#maximum stress in MPa\n",
+ "a_min = 2*a_m-a_max;\t \t\t#Minimum stress in MPa\n",
+ "s = a_min/a_max;\t\t\t #stress ratio\n",
+ "sr = a_max-a_min; \t\t\t#stress range in MPa\n",
+ "\n",
+ "# Results\n",
+ "print \"Maximum Stress Level (in MPa) = \",a_max\n",
+ "print \"Minimum Stress Level (in MPa) = \",a_min\n",
+ "print \"Stress Ratio = \",s\n",
+ "print \"Stress Range (in MPa) = \",sr\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum Stress Level (in MPa) = 175.0\n",
+ "Minimum Stress Level (in MPa) = -35.0\n",
+ "Stress Ratio = -0.2\n",
+ "Stress Range (in MPa) = 210.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.5 pageno : 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "p_min = 20.;\t\t\t#in kN\n",
+ "p_max = 50.;\t\t\t#in kN\n",
+ "l = 500.; \t\t\t#in mm\n",
+ "d = 60.;\t \t\t#in mm\n",
+ "a_u = 650.;\t\t \t#in MPa\n",
+ "a_y = 520.;\t\t #in MPa\n",
+ "fos = 1.8;\t\t\t #factor of safety\n",
+ "\n",
+ "# Calculations\n",
+ "m_max = p_max*l/4;\t\t\t#maximum bending moment in kN mm\n",
+ "m_min = p_min*l/4;\t\t\t#minimum bending moment in kN mm\n",
+ "m_m = (m_max+m_min)/2;\t\t\t#mean bending moment in kN mm\n",
+ "m_a = (m_max-m_min)/2;\t\t\t#alternating bending moment in kN mm\n",
+ "z = 3.14*d**3/32;\n",
+ "a_m = (m_m/z)*1000;\t\t\t#mean bending stress in MPa\n",
+ "a_a = (m_a/z)*1000;\t\t\t#alternating bending stress in MPa\n",
+ "a_e1 = a_a/((1/fos)-(a_m/a_u)**2*fos);\t\t\t#in MPa\n",
+ "a_e2 = a_a/((1/fos)-(a_m/a_u));\t\t\t#in MPa\n",
+ "a_e3 = a_a/((1/fos)-(a_m/a_y));\t\t\t#in MPa\n",
+ "\n",
+ "# Results\n",
+ "print \"ENDURANCE STRESS FROM Gerbers Parabolic Function (in MPa) = %.2f MPa\"%a_e1\n",
+ "print \"ENDURANCE STRESS FROM Goodman Straight Line Relation (in MPa) = %.2f MPa\"%a_e2\n",
+ "print \"ENDURANCE STRESS FROM Soderberg Straight Line Relation (in MPa) = %.2f MPa\"%a_e3\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ENDURANCE STRESS FROM Gerbers Parabolic Function (in MPa) = 236.52 MPa\n",
+ "ENDURANCE STRESS FROM Goodman Straight Line Relation (in MPa) = 371.71 MPa\n",
+ "ENDURANCE STRESS FROM Soderberg Straight Line Relation (in MPa) = 557.78 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file