diff options
author | hardythe1 | 2014-07-28 14:01:58 +0530 |
---|---|---|
committer | hardythe1 | 2014-07-28 14:01:58 +0530 |
commit | 7876eeaf85f7c020ec1f3530963928cd2bc26a66 (patch) | |
tree | 67f4da564402aeb9869eaaf6f1e83ec7f1f75aa9 /Material_Science_In_Engineering/ch16.ipynb | |
parent | 1c1ea29e3e213559fef5f928df109b7d17c21f24 (diff) | |
download | Python-Textbook-Companions-7876eeaf85f7c020ec1f3530963928cd2bc26a66.tar.gz Python-Textbook-Companions-7876eeaf85f7c020ec1f3530963928cd2bc26a66.tar.bz2 Python-Textbook-Companions-7876eeaf85f7c020ec1f3530963928cd2bc26a66.zip |
adding book
Diffstat (limited to 'Material_Science_In_Engineering/ch16.ipynb')
-rwxr-xr-x | Material_Science_In_Engineering/ch16.ipynb | 313 |
1 files changed, 313 insertions, 0 deletions
diff --git a/Material_Science_In_Engineering/ch16.ipynb b/Material_Science_In_Engineering/ch16.ipynb new file mode 100755 index 00000000..7ccccce9 --- /dev/null +++ b/Material_Science_In_Engineering/ch16.ipynb @@ -0,0 +1,313 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 16 : Superconductivity and Superconductors" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.1 page no : 431" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "# Variables\n", + "b = 0;\n", + "#m = -h\n", + "#m = x*h\n", + "# = = >> -h = x*h\n", + "\n", + "# Calculations\n", + "x = -1;\t\t\t#from above realtions\n", + "ur = x+1;\t\t\t#relative permeability\n", + "\n", + "# Results\n", + "print \"Susceptibility of superconductor = \",x\n", + "print \"Relative permeability of superconductor = \",ur\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Susceptibility of superconductor = -1\n", + "Relative permeability of superconductor = 0\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.2 pageno : 434" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "ho = 0.0803;\t\t\t#in A/m\n", + "t1 = 3.; \t\t\t#in K\n", + "t2 = 10.;\t \t\t#in k\n", + "tc = 7.17;\t\t \t#in K\n", + "\n", + "# Calculations\n", + "hc1 = ho*(1-(t1/tc)**2);\n", + "hc2 = ho*(1-(t2/tc)**2);\n", + "\n", + "# Results\n", + "print \"Critical field at 3K (in A/m) = %f A/m\"%hc1\n", + "print \"Critical field at 10K (in A/m) = %.4f A/m\"%hc2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Critical field at 3K (in A/m) = 0.066242 A/m\n", + "Critical field at 10K (in A/m) = -0.0759 A/m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.3 pageno : 434" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Calculations\n", + "r = 1.*10**-3;\t\t\t#in m\n", + "hc = 7.9*10**3;\t\t\t#in A/m\n", + "ic = 2.*3.14*r*hc;\t\t\t#in m\n", + "\n", + "# Results\n", + "print \"Critical current in superconducting state (in A) = %.2f A\"%ic\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Critical current in superconducting state (in A) = 49.61 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.4 pageno : 441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "p = 11.4*10**3;\t\t\t#in kg/m**3\n", + "aw = 207.2;\t\t\t#in kg/kg-mol\n", + "v = 1200.;\t\t\t#in m/s\n", + "\n", + "# Calculations\n", + "na = 60.23*10**26;\t\t\t#avagadro's no\n", + "e = 1.6*10**-19;\t\t\t#charge in C\n", + "m = 9.1*10**-31;\t\t\t#mass of electron in kg\n", + "mo = 4*3.14*10**-7;\t\t\t#in H/m\n", + "ne = 2*p*na/aw;\t\t\t#in per m**3\n", + "ied = ne*e*v;\t\t\t#in A/m**2\n", + "dp = (m/(mo*(6.62*10**28)*(e**2)))**(1./2);\n", + "dp1 = round(dp*10**10,-1);\n", + "\n", + "# Results\n", + "print \"Electron density (in per m**3) = %.2e electron/m**3\"%ne\n", + "print \"Current density (in A/m**2) = %.2e A/m**2\"%ied\n", + "print \"Depth of penetration (in angstorm) = %.1f A\"%dp1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Electron density (in per m**3) = 6.63e+29 electron/m**3\n", + "Current density (in A/m**2) = 1.27e+14 A/m**2\n", + "Depth of penetration (in angstorm) = 210.0 A\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.9 page no : 446" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "ho = 65.*10**3;\t\t\t#in A/m\n", + "tc = 7.18;\t\t\t#in K\n", + "t = 4.2;\t\t\t#in K\n", + "r = 0.5*10**-3;\t\t\t#in m\n", + "\n", + "# Calculations\n", + "hc = ho*(1-(t/tc)**2);\t\t\t#in A/m\n", + "ic = 2*3.14*r*hc; \t\t\t#in A\n", + "a = 3.14*r**2;\t\t \t#area in m**2\n", + "j = ic/a;\t\t\t #in A/m**2\n", + "\n", + "# Results\n", + "print \"current density (in A/m**2) = %.2e A/m**2\"%j\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current density (in A/m**2) = 1.71e+08 A/m**2\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.10 page no : 446" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "hc1 = 21.;\t\t\t#in A/m\n", + "hc2 = 10.;\t\t\t#in A/m\n", + "tc = 7.;\t\t\t#in K\n", + "t = 14.;\t\t\t#in K\n", + "h = hc1/hc2;\n", + "\n", + "# Calculations\n", + "#Determining critical temperature\n", + "tc1 = math.sqrt(3626./11);\t\t\t#by quadratic eqn in the example\n", + "ho = hc1/(1-(tc**2/tc1**2));\n", + "t = 4.2;\t\t\t#in k\n", + "hc = ho*(1-(t/tc1)**2);\n", + "\n", + "# Results\n", + "print \"Critical field at 0 K (in A/m) = %.2f A/m\"%ho\n", + "print \"Critical field At 4.2 k (in A/m) = %.3f A/m\"%hc\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Critical field at 0 K (in A/m) = 24.67 A/m\n", + "Critical field At 4.2 k (in A/m) = 23.347 A/m\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 16.11 page no : 447" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# part (b)\n", + "# Variables\n", + "m = 39.6 # materials\n", + "Tc = 7.19 # K\n", + "\n", + "# Calculation\n", + "dp = math.sqrt(m**2 * (1 - 3**4/Tc**4))\n", + "\n", + "# Results\n", + "print \"Depth of penetration at absolute zero dp(0) = %.3f nm\"%dp" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Depth of penetration at absolute zero dp(0) = 38.995 nm\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |