summaryrefslogtreecommitdiff
path: root/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb')
-rw-r--r--MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb97
1 files changed, 43 insertions, 54 deletions
diff --git a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb
index 85985309..55339520 100644
--- a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb
+++ b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb
@@ -16,7 +16,7 @@
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 19,
"metadata": {
"collapsed": false
},
@@ -68,7 +68,7 @@
},
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 20,
"metadata": {
"collapsed": false
},
@@ -115,14 +115,16 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "collapsed": true
+ },
"source": [
"# Example 6.3"
]
},
{
"cell_type": "code",
- "execution_count": 75,
+ "execution_count": 21,
"metadata": {
"collapsed": false
},
@@ -174,7 +176,7 @@
},
{
"cell_type": "code",
- "execution_count": 76,
+ "execution_count": 22,
"metadata": {
"collapsed": false
},
@@ -192,7 +194,6 @@
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
- "\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
@@ -251,9 +252,6 @@
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
@@ -323,15 +321,6 @@
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
@@ -388,9 +377,8 @@
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+ " canvas.attr('width', width);\n",
+ " canvas.attr('height', height);\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
@@ -523,10 +511,10 @@
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+ " var x0 = msg['x0'];\n",
+ " var y0 = fig.canvas.height - msg['y0'];\n",
+ " var x1 = msg['x1'];\n",
+ " var y1 = fig.canvas.height - msg['y1'];\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
@@ -682,8 +670,8 @@
" this.canvas_div.focus();\n",
" }\n",
"\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
+ " var x = canvas_pos.x;\n",
+ " var y = canvas_pos.y;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
@@ -804,7 +792,6 @@
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
@@ -813,7 +800,7 @@
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+ " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
@@ -824,9 +811,8 @@
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
@@ -915,9 +901,12 @@
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
- " // select the cell after this one\n",
- " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
- " IPython.notebook.select(index + 1);\n",
+ " event.shiftKey = false;\n",
+ " // Send a \"J\" for go to next cell\n",
+ " event.which = 74;\n",
+ " event.keyCode = 74;\n",
+ " manager.command_mode();\n",
+ " manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
@@ -966,7 +955,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -1023,7 +1012,7 @@
},
{
"cell_type": "code",
- "execution_count": 77,
+ "execution_count": 23,
"metadata": {
"collapsed": false
},
@@ -1078,7 +1067,7 @@
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": 24,
"metadata": {
"collapsed": false
},
@@ -1123,7 +1112,7 @@
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 25,
"metadata": {
"collapsed": false
},
@@ -1157,7 +1146,7 @@
},
{
"cell_type": "code",
- "execution_count": 80,
+ "execution_count": 26,
"metadata": {
"collapsed": false
},
@@ -1192,7 +1181,7 @@
},
{
"cell_type": "code",
- "execution_count": 81,
+ "execution_count": 27,
"metadata": {
"collapsed": false
},
@@ -1230,7 +1219,7 @@
},
{
"cell_type": "code",
- "execution_count": 82,
+ "execution_count": 28,
"metadata": {
"collapsed": false
},
@@ -1264,7 +1253,7 @@
},
{
"cell_type": "code",
- "execution_count": 83,
+ "execution_count": 29,
"metadata": {
"collapsed": false
},
@@ -1303,7 +1292,7 @@
},
{
"cell_type": "code",
- "execution_count": 84,
+ "execution_count": 30,
"metadata": {
"collapsed": false
},
@@ -1341,7 +1330,7 @@
},
{
"cell_type": "code",
- "execution_count": 85,
+ "execution_count": 31,
"metadata": {
"collapsed": false
},
@@ -1378,7 +1367,7 @@
},
{
"cell_type": "code",
- "execution_count": 86,
+ "execution_count": 32,
"metadata": {
"collapsed": false
},
@@ -1387,7 +1376,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Effort is 348.376068376 N\n"
+ "Effort is 1741.88034188 N\n"
]
}
],
@@ -1398,7 +1387,7 @@
"W=40000.0 #effort\n",
"R = 400 #Lever length\n",
"u = 0.12 #coefficient of friction between screw and nut\n",
- "P = (D/(2*R))*W*((u+(p/(3.14*D)))/(1-u*(p/(3.14*D)))) #Effort\n",
+ "P = (d/(2*R))*W*((u+(p/(3.14*D)))/(1-u*(p/(3.14*D)))) #Effort\n",
"print \"Effort is\",P,\"N\"\n"
]
},
@@ -1411,7 +1400,7 @@
},
{
"cell_type": "code",
- "execution_count": 87,
+ "execution_count": 33,
"metadata": {
"collapsed": false
},
@@ -1459,7 +1448,7 @@
},
{
"cell_type": "code",
- "execution_count": 88,
+ "execution_count": 34,
"metadata": {
"collapsed": false
},
@@ -1495,7 +1484,7 @@
},
{
"cell_type": "code",
- "execution_count": 89,
+ "execution_count": 35,
"metadata": {
"collapsed": false
},
@@ -1547,7 +1536,7 @@
},
{
"cell_type": "code",
- "execution_count": 90,
+ "execution_count": 36,
"metadata": {
"collapsed": false
},
@@ -1582,9 +1571,9 @@
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python [conda root]",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "conda-root-py"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -1596,7 +1585,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "version": "2.7.12"
}
},
"nbformat": 4,