diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb')
-rw-r--r-- | MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb | 97 |
1 files changed, 43 insertions, 54 deletions
diff --git a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb index 85985309..55339520 100644 --- a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb +++ b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 19, "metadata": { "collapsed": false }, @@ -68,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 20, "metadata": { "collapsed": false }, @@ -115,14 +115,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "collapsed": true + }, "source": [ "# Example 6.3" ] }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 21, "metadata": { "collapsed": false }, @@ -174,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 22, "metadata": { "collapsed": false }, @@ -192,7 +194,6 @@ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", - "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", @@ -251,9 +252,6 @@ " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", @@ -323,15 +321,6 @@ " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", @@ -388,9 +377,8 @@ " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + " canvas.attr('width', width);\n", + " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", @@ -523,10 +511,10 @@ "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " var x0 = msg['x0'];\n", + " var y0 = fig.canvas.height - msg['y0'];\n", + " var x1 = msg['x1'];\n", + " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", @@ -682,8 +670,8 @@ " this.canvas_div.focus();\n", " }\n", "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", + " var x = canvas_pos.x;\n", + " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", @@ -804,7 +792,6 @@ "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", @@ -813,7 +800,7 @@ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", @@ -824,9 +811,8 @@ "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", @@ -915,9 +901,12 @@ " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", @@ -966,7 +955,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"640\">" + "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1023,7 +1012,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 23, "metadata": { "collapsed": false }, @@ -1078,7 +1067,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 24, "metadata": { "collapsed": false }, @@ -1123,7 +1112,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 25, "metadata": { "collapsed": false }, @@ -1157,7 +1146,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 26, "metadata": { "collapsed": false }, @@ -1192,7 +1181,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 27, "metadata": { "collapsed": false }, @@ -1230,7 +1219,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 28, "metadata": { "collapsed": false }, @@ -1264,7 +1253,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 29, "metadata": { "collapsed": false }, @@ -1303,7 +1292,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 30, "metadata": { "collapsed": false }, @@ -1341,7 +1330,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 31, "metadata": { "collapsed": false }, @@ -1378,7 +1367,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 32, "metadata": { "collapsed": false }, @@ -1387,7 +1376,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Effort is 348.376068376 N\n" + "Effort is 1741.88034188 N\n" ] } ], @@ -1398,7 +1387,7 @@ "W=40000.0 #effort\n", "R = 400 #Lever length\n", "u = 0.12 #coefficient of friction between screw and nut\n", - "P = (D/(2*R))*W*((u+(p/(3.14*D)))/(1-u*(p/(3.14*D)))) #Effort\n", + "P = (d/(2*R))*W*((u+(p/(3.14*D)))/(1-u*(p/(3.14*D)))) #Effort\n", "print \"Effort is\",P,\"N\"\n" ] }, @@ -1411,7 +1400,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 33, "metadata": { "collapsed": false }, @@ -1459,7 +1448,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 34, "metadata": { "collapsed": false }, @@ -1495,7 +1484,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 35, "metadata": { "collapsed": false }, @@ -1547,7 +1536,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 36, "metadata": { "collapsed": false }, @@ -1582,9 +1571,9 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [conda root]", + "display_name": "Python [Root]", "language": "python", - "name": "conda-root-py" + "name": "Python [Root]" }, "language_info": { "codemirror_mode": { @@ -1596,7 +1585,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.13" + "version": "2.7.12" } }, "nbformat": 4, |