summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb242
1 files changed, 223 insertions, 19 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
index bffd25f6..85b7eec5 100644
--- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
@@ -42,6 +42,7 @@
}
],
"source": [
+ " \n",
"import math \n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 1\"\n",
@@ -114,7 +115,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 2\"\n",
"#Atmospheric air at temprature,Tinf=300K and with a free stream Velocity Uinf=30m/s flows over a flat plate parallel to a side of length(L)=2m.\n",
@@ -156,7 +161,24 @@
"A=L*B;\n",
"print\"The rate of heat transfer per unit width in W is\"\n",
"Q=hbarL*A*(Tw-Tinf)\n",
- "print\"Q=\",Q"
+ "print\"Q=\",Q\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -196,7 +218,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 3\"\n",
"#Air at a pressure of 101kPa and temprature,Tinf=20°C flows with a velocity(Uinf) of 5m/s over a flat plate whose temprature is kept constant at Tw=140°C.\n",
@@ -246,7 +272,33 @@
"#Q is the rate of heat transfer\n",
"print\"The rate of heat transfer per unit width in W is\"\n",
"Q=h*A*(Tw-Tinf)\n",
- "print\"Q=\",Q"
+ "print\"Q=\",Q\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -288,7 +340,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 4\"\n",
"#Castor oil at temprature,Tinf=36°C flows over a heated plate of length,L=6m and breadth,B=1m at velocity,Uinf=0.06m/s\n",
@@ -336,7 +392,29 @@
"A=L*B;\n",
"print\"(c)The rate of heat transfer in W is\"\n",
"Q=hbarL*A*(Tw-Tinf)\n",
- "print\"Q=\",Q"
+ "print\"Q=\",Q\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -369,7 +447,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 5\"\n",
"#A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C\n",
@@ -405,7 +487,24 @@
"#If qm be the power generation in W/m**2 within the module ,we can write from energy balance qm*(t/0.1000)*(l/0.1000)*(B)=hbarL*(t/0.1000)*(B)*(Tw-Tinf)\n",
"print\"The required power generation in W/m**3 is\"\n",
"qm=(hL*(l/0.1000)*(B)*(Tw-Tinf))/((t/0.1000)*(l/0.1000)*(B))\n",
- "print\"qm=\",qm"
+ "print\"qm=\",qm\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -441,7 +540,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 6\"\n",
"#An aircraft is moving at a velocity of Uinf=150m/s in air at an altitude where the pressure is 0.7bar and the temprature is Tinf=-5°C.\n",
@@ -476,7 +579,21 @@
"#Therefore we can write Surface temprature of wing, Tw=Tinf+(Qr/(2*hbarL))\n",
"print\"Surface temprature of wing in kelvin is\"\n",
"Tw=(273+Tinf)+(Qr/(2*hbarL))\n",
- "print\"Tw=\",Tw"
+ "print\"Tw=\",Tw\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -516,7 +633,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 7\"\n",
"#A fine wire having a diameter(D)=0.04mm is placed in an air stream at temprature,Tinf=25°C having a flow velocity of Uinf=60m/s perpendicular to wire.\n",
@@ -558,7 +679,32 @@
"#Heat transfer per unit length(qL) is given by pi*D*hbar*(Tw-Tinf)\n",
"print\"Heat transfer per unit length in W/m is\"\n",
"qL=math.pi*(D*10**-3)*hbar*(Tw-Tinf)\n",
- "print\"qL=\",qL"
+ "print\"qL=\",qL\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -596,7 +742,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 8\"\n",
"#Mercury and a light oil flowing at Uinf=4mm/s in a smooth tube having diameter(D)=25mm at a bulk temprature of 80°C.\n",
@@ -633,7 +783,24 @@
"#Ltoil is the thermal entry length for oil\n",
"print\"The thermal entry length for oil in m is\"\n",
"Ltoil=0.05*Reoil*Proil*D\n",
- "print\"Ltoil=\",Ltoil"
+ "print\"Ltoil=\",Ltoil\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -673,7 +840,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 9\"\n",
"#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n",
@@ -724,7 +895,21 @@
"#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n",
"print\"The tube surface temprature at the exit plane in °C is \"\n",
"Twe=Tbo+(qw/hL)\n",
- "print\"Twe=\",Twe"
+ "print\"Twe=\",Twe\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -767,7 +952,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 10\"\n",
"#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n",
@@ -822,7 +1011,18 @@
"#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n",
"print\"The tube surface temprature at the exit plane in °C is \"\n",
"Twe=Tbo+(qw/hL)\n",
- "print\"Twe=\",Twe"
+ "print\"Twe=\",Twe\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -867,7 +1067,11 @@
}
],
"source": [
- "import math\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 11\"\n",
"#Liquid sulphur di oxide in a saturated state flows inside a L=5m long tube and D=25mm internal diameter with a mass flow rate(mdot) of 0.15 kg/s.\n",