diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb | 242 |
1 files changed, 223 insertions, 19 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb index bffd25f6..85b7eec5 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb @@ -42,6 +42,7 @@ } ], "source": [ + " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 1\"\n", @@ -114,7 +115,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 2\"\n", "#Atmospheric air at temprature,Tinf=300K and with a free stream Velocity Uinf=30m/s flows over a flat plate parallel to a side of length(L)=2m.\n", @@ -156,7 +161,24 @@ "A=L*B;\n", "print\"The rate of heat transfer per unit width in W is\"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print\"Q=\",Q" + "print\"Q=\",Q\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -196,7 +218,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 3\"\n", "#Air at a pressure of 101kPa and temprature,Tinf=20°C flows with a velocity(Uinf) of 5m/s over a flat plate whose temprature is kept constant at Tw=140°C.\n", @@ -246,7 +272,33 @@ "#Q is the rate of heat transfer\n", "print\"The rate of heat transfer per unit width in W is\"\n", "Q=h*A*(Tw-Tinf)\n", - "print\"Q=\",Q" + "print\"Q=\",Q\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -288,7 +340,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 4\"\n", "#Castor oil at temprature,Tinf=36°C flows over a heated plate of length,L=6m and breadth,B=1m at velocity,Uinf=0.06m/s\n", @@ -336,7 +392,29 @@ "A=L*B;\n", "print\"(c)The rate of heat transfer in W is\"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print\"Q=\",Q" + "print\"Q=\",Q\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -369,7 +447,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 5\"\n", "#A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C\n", @@ -405,7 +487,24 @@ "#If qm be the power generation in W/m**2 within the module ,we can write from energy balance qm*(t/0.1000)*(l/0.1000)*(B)=hbarL*(t/0.1000)*(B)*(Tw-Tinf)\n", "print\"The required power generation in W/m**3 is\"\n", "qm=(hL*(l/0.1000)*(B)*(Tw-Tinf))/((t/0.1000)*(l/0.1000)*(B))\n", - "print\"qm=\",qm" + "print\"qm=\",qm\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -441,7 +540,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 6\"\n", "#An aircraft is moving at a velocity of Uinf=150m/s in air at an altitude where the pressure is 0.7bar and the temprature is Tinf=-5°C.\n", @@ -476,7 +579,21 @@ "#Therefore we can write Surface temprature of wing, Tw=Tinf+(Qr/(2*hbarL))\n", "print\"Surface temprature of wing in kelvin is\"\n", "Tw=(273+Tinf)+(Qr/(2*hbarL))\n", - "print\"Tw=\",Tw" + "print\"Tw=\",Tw\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -516,7 +633,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 7\"\n", "#A fine wire having a diameter(D)=0.04mm is placed in an air stream at temprature,Tinf=25°C having a flow velocity of Uinf=60m/s perpendicular to wire.\n", @@ -558,7 +679,32 @@ "#Heat transfer per unit length(qL) is given by pi*D*hbar*(Tw-Tinf)\n", "print\"Heat transfer per unit length in W/m is\"\n", "qL=math.pi*(D*10**-3)*hbar*(Tw-Tinf)\n", - "print\"qL=\",qL" + "print\"qL=\",qL\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -596,7 +742,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 8\"\n", "#Mercury and a light oil flowing at Uinf=4mm/s in a smooth tube having diameter(D)=25mm at a bulk temprature of 80°C.\n", @@ -633,7 +783,24 @@ "#Ltoil is the thermal entry length for oil\n", "print\"The thermal entry length for oil in m is\"\n", "Ltoil=0.05*Reoil*Proil*D\n", - "print\"Ltoil=\",Ltoil" + "print\"Ltoil=\",Ltoil\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -673,7 +840,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 9\"\n", "#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n", @@ -724,7 +895,21 @@ "#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n", "print\"The tube surface temprature at the exit plane in °C is \"\n", "Twe=Tbo+(qw/hL)\n", - "print\"Twe=\",Twe" + "print\"Twe=\",Twe\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -767,7 +952,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 10\"\n", "#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n", @@ -822,7 +1011,18 @@ "#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n", "print\"The tube surface temprature at the exit plane in °C is \"\n", "Twe=Tbo+(qw/hL)\n", - "print\"Twe=\",Twe" + "print\"Twe=\",Twe\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -867,7 +1067,11 @@ } ], "source": [ - "import math\n", + " \n", + " \n", + " \n", + " \n", + " import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 11\"\n", "#Liquid sulphur di oxide in a saturated state flows inside a L=5m long tube and D=25mm internal diameter with a mass flow rate(mdot) of 0.15 kg/s.\n", |