summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb75
1 files changed, 44 insertions, 31 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
index d3b728b1..d9d7f745 100644
--- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
@@ -34,6 +34,7 @@
}
],
"source": [
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 1\"\n",
"#The temprature of two faces of the slabs are T1=40°C & T2=20°C \n",
"#The thickness of the slab(L) is 80mm or .08m\n",
@@ -57,7 +58,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {
"collapsed": false
},
@@ -73,7 +74,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 2\"\n",
"#The thermal conductivity(km)of masonry wall is .8 W/(mK)\n",
"#The thermal conductivity(kc)of composite wall is .2 W/(mK)\n",
@@ -88,7 +89,7 @@
"#The thickness of masonry wall is Lm.\n",
"print\"The thickness of masonry wall is Lm in m\"\n",
"Lm=(km/kc)*(Lc/(0.8))\n",
- "print\"Lm=\",Lm"
+ "print\"Lm=\",Lm\n"
]
},
{
@@ -100,7 +101,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 6,
"metadata": {
"collapsed": false
},
@@ -116,7 +117,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 4\"\n",
"#The average forced convective heat transfer coefficient(hbr) is 200 W/( m**2 °C)\n",
"#The fluid temprature(Tinf) upstream of the cold surface is 100°C\n",
@@ -139,7 +140,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"metadata": {
"collapsed": false
},
@@ -155,7 +156,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 5\"\n",
"#The average heat transfer coefficient(hbr) is 800 W/(m**2°C)\n",
"#The surface temprature of heat exchanger is 75°C and air temprature is 25°C so deltaT=(75-25)\n",
@@ -178,7 +179,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -189,16 +190,16 @@
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n",
"The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\n",
- "Q= 224.0\n",
+ "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n",
+ "hbr= 11.2\n",
"The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\n",
"Q= 224.0\n",
- "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n",
- "hbr= 11.2\n"
+ "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n"
]
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\"\n",
"#The temprature of the plate(Ts) is 225°C\n",
"#The ambient temprature (Tinf) is 25°C\n",
@@ -214,13 +215,28 @@
"m=4;\n",
"cp=2.8;\n",
"print\"The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\"\n",
+ "print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n",
+ "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n",
+ "print\"hbr=\",hbr\n",
"Q=hbr*A*(Ts-Tinf)\n",
- "print\"Q=\",Q\n",
"print\"The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\"\n",
"print\"Q=\",Q\n",
"print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n",
- "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n",
- "print\"hbr=\",hbr"
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -232,7 +248,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 8,
"metadata": {
"collapsed": false
},
@@ -248,7 +264,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 7\"\n",
"#The temprature(T) of brick wall after sunset is 50°C\n",
"#The emissity value(emi)=0.9\n",
@@ -272,7 +288,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 9,
"metadata": {
"collapsed": false
},
@@ -288,7 +304,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 8\"\n",
"#The temprature(T) of asphalt pavement = 50°C\n",
"#The stefan-Boltzman constant(sigma)=5.6697*10**-8 W/(m**2*K**4).\n",
@@ -298,7 +314,7 @@
"print\"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\"\n",
"#Let Eb/A=F\n",
"F=sigma*(50+273.15)**4\n",
- "print\"F=\",F"
+ "print\"F=\",F\n"
]
},
{
@@ -310,7 +326,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 10,
"metadata": {
"collapsed": false
},
@@ -330,7 +346,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 9\"\n",
"#The Thickness(L) of wall= 150 mm or 0.15 m.\n",
"#The wall on one side is exposed to air at temprature(Ta)= 60°C and on the other side to air at temprature(Tb) = 20°C\n",
@@ -367,7 +383,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -378,9 +394,7 @@
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n",
"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\n",
- "F1= 332.029390022\n",
"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\n",
- "F2= 332.132667923\n",
"The values of temprature that are considered are <298 K\n",
"Satisfactory solutions for Temprature in K is\n",
"T2= 292.5\n",
@@ -391,7 +405,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\"\n",
"#The spacecraft panel has thickness(L)=.01 m\n",
"#The spacecraft has inner temprature (Ti)=298 K\n",
@@ -413,9 +427,7 @@
"#Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To)\n",
"#so hr=4.536*10**-8*T2**3\n",
"print\"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\"\n",
- "print\"F1=\",F1\n",
"print\"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\"\n",
- "print\"F2=\",F2\n",
"print\"The values of temprature that are considered are <298 K\"\n",
"for i in range(285,292):\n",
" T2=i\n",
@@ -445,7 +457,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
@@ -488,7 +500,8 @@
"print\"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\"\n",
"#Let Q/L=F\n",
"F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)**4-(T2+273.15)**4)\n",
- "print\"F=\",F"
+ "print\"F=\",F\n",
+ "\n"
]
}
],