diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb | 75 |
1 files changed, 44 insertions, 31 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb index d3b728b1..d9d7f745 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -34,6 +34,7 @@ } ], "source": [ + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 1\"\n", "#The temprature of two faces of the slabs are T1=40°C & T2=20°C \n", "#The thickness of the slab(L) is 80mm or .08m\n", @@ -57,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -73,7 +74,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 2\"\n", "#The thermal conductivity(km)of masonry wall is .8 W/(mK)\n", "#The thermal conductivity(kc)of composite wall is .2 W/(mK)\n", @@ -88,7 +89,7 @@ "#The thickness of masonry wall is Lm.\n", "print\"The thickness of masonry wall is Lm in m\"\n", "Lm=(km/kc)*(Lc/(0.8))\n", - "print\"Lm=\",Lm" + "print\"Lm=\",Lm\n" ] }, { @@ -100,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -116,7 +117,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 4\"\n", "#The average forced convective heat transfer coefficient(hbr) is 200 W/( m**2 °C)\n", "#The fluid temprature(Tinf) upstream of the cold surface is 100°C\n", @@ -139,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -155,7 +156,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 5\"\n", "#The average heat transfer coefficient(hbr) is 800 W/(m**2°C)\n", "#The surface temprature of heat exchanger is 75°C and air temprature is 25°C so deltaT=(75-25)\n", @@ -178,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -189,16 +190,16 @@ "text": [ "Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n", "The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\n", - "Q= 224.0\n", + "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n", + "hbr= 11.2\n", "The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\n", "Q= 224.0\n", - "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n", - "hbr= 11.2\n" + "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n" ] } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\"\n", "#The temprature of the plate(Ts) is 225°C\n", "#The ambient temprature (Tinf) is 25°C\n", @@ -214,13 +215,28 @@ "m=4;\n", "cp=2.8;\n", "print\"The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\"\n", + "print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n", + "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n", + "print\"hbr=\",hbr\n", "Q=hbr*A*(Ts-Tinf)\n", - "print\"Q=\",Q\n", "print\"The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\"\n", "print\"Q=\",Q\n", "print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n", - "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n", - "print\"hbr=\",hbr" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -232,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -248,7 +264,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 7\"\n", "#The temprature(T) of brick wall after sunset is 50°C\n", "#The emissity value(emi)=0.9\n", @@ -272,7 +288,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": { "collapsed": false }, @@ -288,7 +304,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 8\"\n", "#The temprature(T) of asphalt pavement = 50°C\n", "#The stefan-Boltzman constant(sigma)=5.6697*10**-8 W/(m**2*K**4).\n", @@ -298,7 +314,7 @@ "print\"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\"\n", "#Let Eb/A=F\n", "F=sigma*(50+273.15)**4\n", - "print\"F=\",F" + "print\"F=\",F\n" ] }, { @@ -310,7 +326,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -330,7 +346,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 9\"\n", "#The Thickness(L) of wall= 150 mm or 0.15 m.\n", "#The wall on one side is exposed to air at temprature(Ta)= 60°C and on the other side to air at temprature(Tb) = 20°C\n", @@ -367,7 +383,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 11, "metadata": { "collapsed": false }, @@ -378,9 +394,7 @@ "text": [ "Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n", "Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\n", - "F1= 332.029390022\n", "heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\n", - "F2= 332.132667923\n", "The values of temprature that are considered are <298 K\n", "Satisfactory solutions for Temprature in K is\n", "T2= 292.5\n", @@ -391,7 +405,7 @@ } ], "source": [ - "\n", + "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\"\n", "#The spacecraft panel has thickness(L)=.01 m\n", "#The spacecraft has inner temprature (Ti)=298 K\n", @@ -413,9 +427,7 @@ "#Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To)\n", "#so hr=4.536*10**-8*T2**3\n", "print\"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\"\n", - "print\"F1=\",F1\n", "print\"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\"\n", - "print\"F2=\",F2\n", "print\"The values of temprature that are considered are <298 K\"\n", "for i in range(285,292):\n", " T2=i\n", @@ -445,7 +457,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -488,7 +500,8 @@ "print\"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\"\n", "#Let Q/L=F\n", "F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)**4-(T2+273.15)**4)\n", - "print\"F=\",F" + "print\"F=\",F\n", + "\n" ] } ], |