summaryrefslogtreecommitdiff
path: root/Industrial_Instrumentation/ch4.ipynb
diff options
context:
space:
mode:
authordebashisdeb2014-06-20 15:42:42 +0530
committerdebashisdeb2014-06-20 15:42:42 +0530
commit83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch)
treef54eab21dd3d725d64a495fcd47c00d37abed004 /Industrial_Instrumentation/ch4.ipynb
parenta78126bbe4443e9526a64df9d8245c4af8843044 (diff)
downloadPython-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip
removing problem statements
Diffstat (limited to 'Industrial_Instrumentation/ch4.ipynb')
-rw-r--r--Industrial_Instrumentation/ch4.ipynb314
1 files changed, 49 insertions, 265 deletions
diff --git a/Industrial_Instrumentation/ch4.ipynb b/Industrial_Instrumentation/ch4.ipynb
index 35fec4af..7eb1e631 100644
--- a/Industrial_Instrumentation/ch4.ipynb
+++ b/Industrial_Instrumentation/ch4.ipynb
@@ -1,6 +1,7 @@
{
"metadata": {
- "name": ""
+ "name": "",
+ "signature": "sha256:75cc662b83a20e10c962bb4b327ffefb7e8b88ef4b321db4fa8f1bf933a9eccf"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -27,8 +28,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Calculate the change in internal energy of the working fluid stating whether it is a gain or loss.\n",
- "\n",
+ "#\n",
"# Variables\n",
"Q = -50.; \t\t\t#kJ/kg\n",
"W = -100.; \t\t\t#kJ/kg\n",
@@ -64,9 +64,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate the heat flow to and from the cylinder\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"u1 = 450.; \t\t\t#kJ/kg\n",
@@ -104,9 +102,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the heat transferred from the nitrogen to the surroundings.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"m = 0.3; \t\t\t#kg\n",
@@ -147,9 +143,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "How much did the internal energy of the gas change ?\n",
- "'''\n",
+ "\n",
"# Variables\n",
"p1 = 105.; \t\t\t#kPa\n",
"V1 = 0.4; \t\t\t#m**3\n",
@@ -189,11 +183,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine : (i) Work done ;\n",
- "(ii) Change in internal energy ; and\n",
- "(iii) Heat transferred\n",
- "'''\n",
+ "\n",
"import math\n",
"\n",
"# Variables\n",
@@ -248,9 +238,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the quantity of heat added to the system.\n",
- "'''\n",
+ "\n",
"\n",
"\n",
"# Variables\n",
@@ -291,11 +279,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine : \n",
- "(i) Work done ;\n",
- "(ii) Change in internal energy of the system.\n",
- "'''\n",
"\n",
"# Variables\n",
"Q2 = 9000.; \t\t\t#kJ\n",
@@ -337,13 +320,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "determine \u2206U, \u2206PE, \u2206KE, Q and W, when\n",
- "(i) the stone is about to enter the water,\n",
- "(ii) the stone has come to rest in the tank, and\n",
- "(iii) the heat is transferred to the surroundings in such an amount that the stone and water\n",
- "come to their initial temperature.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"m = 20.; \t\t\t#kg\n",
@@ -404,14 +381,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) How much will be the heat that flows into the system along path lnm if the work done\n",
- "is 21 kJ ?\n",
- "(ii) When the system is returned from m to l along the curved path, the work done on the\n",
- "system is 42 kJ. Does the system absorb or liberate heat, and how much of the heat is absorbed\n",
- "or liberated ?\n",
- "(iii) If U l = 0 and U n = 84 kJ, find the heat absorbed in the processes ln and nm.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"Q_lqm = 168.; \t\t\t#kJ\n",
@@ -460,9 +430,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "What will be the change of internal energy of the system when its temperature changes\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"from scipy.integrate import quad \n",
@@ -510,9 +478,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Completeing the table\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -587,9 +553,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the steam flow round the cycle in kg/s.\n",
- "'''\n",
"\n",
"# Variables\n",
"P = 1200.; \t\t\t#kW\n",
@@ -630,11 +593,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine :\n",
- "(i) The change in internal energy ;\n",
- "(ii) The work done.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"dT = 25.; \t\t\t#0C\n",
@@ -677,12 +636,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) Find the change in energy of the system.\n",
- "(ii) The system is returned to its initial volume by an adiabatic process which requires\n",
- "110 kJ of work. Find the change in energy of the system.\n",
- "(iii) For the combined processes of (i) and (ii) determine the change in energy of the system.\n",
- "'''\n",
"\n",
"# Variables\n",
"Q = 50.; \t\t\t#kJ\n",
@@ -736,11 +689,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine :\n",
- "(i) Change in internal energy ;\n",
- "(ii) Change in enthalpy.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"from scipy.integrate import quad \n",
@@ -791,14 +740,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine:\n",
- "(i) If the expansion is quasi-static, find Q, \u2206U and W for the process.\n",
- "(ii) In another process, the same system expands according to the same pressure-volume\n",
- "relationship as in part (i), and from the same initial state to the same final state as in part (i), but\n",
- "the heat transfer in this case is 32 kJ. Find the work transfer for this process.\n",
- "(iii) Explain the difference in work transfer in parts (i) and (ii).\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"V1 = 0.25; \t\t\t#m**3\n",
@@ -853,13 +795,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "find\n",
- "(i) Heat added/kg ;\n",
- "(ii) Work done/kg ;\n",
- "(iii) Change in internal energy/kg ;\n",
- "(iv) Change in enthalpy/kg.\n",
- "'''\n",
"\n",
"import math \n",
"from scipy.integrate import quad \n",
@@ -928,9 +863,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the work done during the process.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"m = 1.; \t\t\t#kg\n",
@@ -971,9 +904,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "find the direction and magnitude of the work and heat transfer.\n",
- "'''\n",
+ "\n",
"\n",
"from numpy import *\n",
"from scipy.integrate import quad \n",
@@ -1030,11 +961,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine :\n",
- "(i) The adiabatic work ;\n",
- "(ii) The values of internal energy at all end states if initial value is 105 kJ.\n",
- "'''\n",
"\n",
"# Variables\n",
"Qv = 90.; \t\t\t#kJ\n",
@@ -1088,12 +1014,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) The work done ;\n",
- "(ii) The index of expansion, if the above processes are replaced by a single reversible polytropic\n",
- "process giving the same work between the same initial and final states.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"V1 = 0.2; \t\t\t#m**3\n",
@@ -1152,11 +1073,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Evaluate :\n",
- "(i) The work ;\n",
- "(ii) Decrease in internal energy of the system.\n",
- "'''\n",
"\n",
"# Variables\n",
"d = 0.15; \t\t\t#m\n",
@@ -1203,14 +1119,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine :\n",
- "(i) The mass of gas ;\n",
- "(ii) The value of index \u2018n\u2019 for compression ;\n",
- "(iii) The increase in internal energy of the gas ;\n",
- "(iv) The heat received or rejected by the gas during compression.\n",
- "Take \u03b3 = 1.4, R = 294.2 J/kg\u00b0C.\n",
- "'''\n",
+ "\n",
"import math\n",
"\n",
"# Variables\n",
@@ -1274,12 +1183,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) The final temperature ;\n",
- "(ii) The final volume ;\n",
- "(iii) The work done.\n",
- "'''\n",
"\n",
"# Variables\n",
"p1 = 1.02*10**5; \t#Pa\n",
@@ -1336,9 +1239,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate c p and c v .\n",
- "'''\n",
+ "\n",
"\n",
"from numpy import *\n",
"import math\n",
@@ -1390,9 +1291,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the heat flow to or from the cylinder walls.\n",
- "'''\n",
"\n",
"# Variables\n",
"n = 1.3;\n",
@@ -1441,12 +1339,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) Pressure at the end of constant volume cooling.\n",
- "(ii) Change in internal energy during constant volume process.\n",
- "(iii) Net work done and heat transferred during the cycle. Assume\n",
- "'''\n",
+ "\n",
"import math\n",
"\n",
"# Variables\n",
@@ -1513,9 +1406,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the net work done and heat transferred during the cycle.\n",
- "'''\n",
"\n",
"import math\n",
"\n",
@@ -1571,11 +1461,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) Sketch the cycle on p-V diagram.\n",
- "(ii) Calculate the work done in each process starting whether it is done on or by the system\n",
- "and evaluate the net cyclic work and heat transfer.\n",
- "'''\n",
+ "\n",
"\n",
"%pylab inline\n",
"\n",
@@ -1705,9 +1591,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine theamount of heat added to the system so that piston moves by 3.5 cm.\n",
- "'''\n",
"\n",
"import math \n",
"from scipy.integrate import quad \n",
@@ -1770,11 +1653,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine :\n",
- "(i) The change in enthalpy (\u2206 h) ;\n",
- "(ii) Work done during the process (W).\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"r = 10.; \t\t\t#kg/min\n",
@@ -1837,12 +1716,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) The rate at which heat is rejected to the turbine, and\n",
- "(ii) The area of the inlet pipe given that the specific volume of the gases at the inlet is\n",
- "0.45 m 3 /kg.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"\n",
@@ -1894,11 +1768,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) The power required to drive the compressor ;\n",
- "(ii) The inlet and output pipe cross-sectional areas.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"m = 0.5; \t\t\t#kg/s\n",
@@ -1954,9 +1824,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate the power developed by the turbine. Consider the boiler and turbine as single system\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"h1 = 800.; \t\t\t#kJ/kg\n",
@@ -1998,9 +1866,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the power output of the turbine.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"g = 9.8; \t\t\t#m/s**2\n",
@@ -2044,9 +1910,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the final enthalpy of steam.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"p1 = 6.87; \t\t\t#bar\n",
@@ -2088,9 +1952,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the power capacity of the system in MW.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"m = 220./60; \t\t\t#kg/s\n",
@@ -2135,9 +1997,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the capacity of the turbine if the gas flow is 5 kg/s.\n",
- "'''\n",
"\n",
"\n",
"# Variables\n",
@@ -2181,10 +2040,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Find : (i) Motor power required to drive the compressor ;\n",
- "(ii) Ratio of inlet to outlet pipe diameter.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"C1 = 12.; \t\t\t#m/s\n",
@@ -2235,9 +2091,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Compute the amount of heat transfer to the atmosphere from the compressor per kg of air.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"W = -175.; \t\t\t #kJ/kg\n",
@@ -2277,12 +2131,6 @@
"collapsed": false,
"input": [
"\n",
- "'''\n",
- "(i) Find the velocity at exit of the nozzle.\n",
- "(ii) If the inlet area is 900 cm 2 and the specific volume at inlet is 0.187 m 3 /kg, find the mass\n",
- "flow rate.\n",
- "(iii) If the specific volume at the nozzle exit is 0.498 m 3 /kg, find the exit area of nozzle.\n",
- "'''\n",
"import math\n",
"\n",
"# Variables\n",
@@ -2339,9 +2187,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "evaluate the heat transfer from the water per kg of water flowing.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"h1 = 240.; \t\t\t#kJ/kg\n",
@@ -2380,9 +2226,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "evaluate the relative velocity of gas leaving the jet pipe. For the gas at t = 820\u00b0C, h = 800 kJ/kg and at 910\u00b0C, 915 kJ/kg.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -2424,9 +2268,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the capacity of the electric motor to run the pump.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -2474,9 +2316,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the velocity of the exhaust jet.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -2524,11 +2364,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate :\n",
- "(i) Rate of heat transfer to the air in the heat exchanger ;\n",
- "(ii) The power output from the turbine assuming no heat loss ;\n",
- "'''\n",
"\n",
"# Variables\n",
"t1 = 20.; \t\t\t#0C\n",
@@ -2584,11 +2419,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) The state of steam after cooling ;\n",
- "(ii) The amount of heat rejected by the steam.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"V = 0.028; \t\t\t#m**3\n",
@@ -2644,11 +2475,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate :\n",
- "(i) Heat supplied ;\n",
- "(ii) Work done\n",
- "'''\n",
"\n",
"# Variables\n",
"m = 0.08; \t\t\t#kg\n",
@@ -2697,9 +2523,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the heat supplied, and show on a T-s diagram the area which represents the heat flow.\n",
- "'''\n",
+ "\n",
"from numpy import *\n",
"from matplotlib.pyplot import *\n",
"\n",
@@ -2789,12 +2613,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate per kg :\n",
- "(i) The change of internal energy ;\n",
- "(ii) The change of enthalpy ;\n",
- "(iii) The work done.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"p1 = 7.*10**5; \t\t\t#Pa\n",
@@ -2858,11 +2677,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate per kg of steam :\n",
- "(i) Work done ;\n",
- "(ii) Heat flow to or from the cylinder walls.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"from scipy.integrate import quad \n",
@@ -2923,11 +2738,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate per kg of steam :\n",
- "(i) The heat supplied ;\n",
- "(ii) The work done.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"p1 = 100.; \t\t\t#bar\n",
@@ -2975,9 +2786,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the work done by the steam.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"m = 1.; \t\t\t#kg\n",
@@ -3020,11 +2829,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate per kg of steam :\n",
- "(i) The work done during expansion ;\n",
- "(ii) The heat flow to or from the cylinder walls during the expansion.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"p1 = 7.*10**5; \t\t\t#N/m**2\n",
@@ -3083,9 +2888,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "determine the work done per kg of steam flow through the turbine\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"p1 = 15.; \t\t\t#bar\n",
@@ -3133,9 +2936,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "determine the quality of the steam leaving the nozzle.\n",
- "'''\n",
+ "\n",
"# Variables\n",
"p1 = 10.; \t\t\t#bar\n",
"t1 = 200.; \t\t\t#0C\n",
@@ -3178,9 +2979,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the initial dryness fraction of the steam.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"h1 = 2776.4; \t\t\t#kJ/kg\n",
@@ -3219,9 +3018,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the exit condition of steam using Mollier chart.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"p1 = 10.; \t\t\t#bar\n",
@@ -3260,11 +3057,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) Change in entropy ;\n",
- "(ii) Change in enthalpy ;\n",
- "(iii) Change in internal energy.\n",
- "'''\n",
+ "\n",
"\n",
"\n",
"import math \n",
@@ -3370,8 +3163,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Calculate the mass of air which has left the receiver.\n",
- "\n",
"\n",
"# Variables\n",
"V1 = 5.5; \t\t\t#m**3\n",
@@ -3418,10 +3209,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "determine the work obtainable by utilising the kinetic energy of the discharge air to run a frictionless\n",
- "turbine\n",
- "'''\n",
+ "\n",
"# Variables\n",
"cp = 1.; \t\t\t#kJ/kg.K\n",
"cv = 0.711; \t\t\t#kJ/kg.K\n",
@@ -3471,11 +3259,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) Final state condition ;\n",
- "(ii) Work done by the piston ;\n",
- "(iii) Heat transferred to oxygen.\n",
- "'''\n",
+ "\n",
"\n",
"#For oxygen\n",
"import math \n",