summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Thermodynamics/Chapter15.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-09-04 22:04:10 +0530
committerThomas Stephen Lee2015-09-04 22:04:10 +0530
commit41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch)
treef4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Fundamentals_Of_Thermodynamics/Chapter15.ipynb
parent9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff)
downloadPython-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip
add/remove/update books
Diffstat (limited to 'Fundamentals_Of_Thermodynamics/Chapter15.ipynb')
-rwxr-xr-xFundamentals_Of_Thermodynamics/Chapter15.ipynb248
1 files changed, 0 insertions, 248 deletions
diff --git a/Fundamentals_Of_Thermodynamics/Chapter15.ipynb b/Fundamentals_Of_Thermodynamics/Chapter15.ipynb
deleted file mode 100755
index 18f2c842..00000000
--- a/Fundamentals_Of_Thermodynamics/Chapter15.ipynb
+++ /dev/null
@@ -1,248 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:49d323999697626f705831867b32f6c520c5287d76ed00656f7259e6db65356e"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter15:CHEMICAL REACTIONS"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex15.1:Pg-621"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques1\n",
- "#theoratical air-fuel ratio for combustion of octane\n",
- "#combustion equation is\n",
- "#C8H18 + 12.5O2 + 12.5(3.76) N2 \u2192 8 CO2 + 9H2O + 47.0N2\n",
- "rm=(12.5+47.0)/1;#air fuel ratio on mole basis\n",
- "rma=rm*28.97/114.2;#air fuel ratio on mass basis;\n",
- "print \"Theoratical air fuel ratio on mass basis is\",round(rma),\"kg air/kg fuel\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Theoratical air fuel ratio on mass basis is 15.0 kg air/kg fuel\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex15.6:Pg-629"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques6\n",
- "#determining heat transfer per kilomole of fuel entering combustion chamber\n",
- "\n",
- "#1-CH4\n",
- "#2-CO2\n",
- "#3-H2O\n",
- "#hf-standard enthalpy of given substance\n",
- "hf1=-74.873;#kJ\n",
- "hf2=-393.522;#kJ\n",
- "hf3=-285.830;#kJ\n",
- "Qcv=hf2+2*hf3-hf1;#kJ\n",
- "print \"Heat transfer per kilomole of fuel entering combustion chamber is\",round(Qcv,3),\"kJ\"\n",
- "#the answers in the book is different as they have not printed the decimals in values"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Heat transfer per kilomole of fuel entering combustion chamber is -890.309 kJ\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex15.7:Pg-631"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques7\n",
- "#calculating enthalpy of water at given pressure and temperature\n",
- "\n",
- "#1.Assuming steam to be an ideal gas with value of Cp\n",
- "T1=298.15;#Initial temperature in K\n",
- "T2=573.15;#final temperature in K\n",
- "T=(T1+T2)/2;#average temperature in K\n",
- "Cp=1.79+0.107*T/1000+0.586*(T/1000)**2-.20*(T/1000)**3;#specific heat at constant pressure in kj/kg.K\n",
- "M=18.015;#mass in kg\n",
- "dh=M*Cp*(T2-T1);#enthalpy change in kJ/kmol\n",
- "ho=-241.826;#enthalpy at standard temperature and pressure in kJ/mol\n",
- "htp1=ho+dh/1000;#enthalpy at given temp and pressure in kJ/kmol\n",
- "print \" 1. Enthalpy of water at given pressure and temperature using value of Cp =\",round(htp1,3),\"kJ/kmol\"\n",
- "\n",
- "#2..Assuming steam to be an ideal gas with value for dh\n",
- "dh=9359;#enthalpy change from table A.9 in kJ/mol\n",
- "htp2=ho+dh/1000;#enthalpy at given temp and pressure in kJ/kmol\n",
- "print \" 2. Enthalpy of water at given pressure and temperature assuming value od dh =\",round(htp2,3),\"kJ/kmol \"\n",
- "\n",
- "#3. Using steam table\n",
- "dh=M*(2977.5-2547.2);#enthalpy change for gases in kJ/mol\n",
- "htp3g=dh/1000+ho;\n",
- "dh=M*(2977.5-104.9);#enthalpy change for liquid in kJ/mol\n",
- "hl=-285.830;#standard enthalpy for liquid in kJ/kmol\n",
- "htp31=hl+dh/1000.0;#enthalpy at given temp and pressure in kJ/kmol\n",
- "print \" 3.(i) enthalpy at given temp and pressure in kJ/kmol in terms of liquid =\",round(htp31,3),\"kJ/kmol \"\n",
- "print \" 3.(ii) enthalpy at given temp and pressure in kJ/kmol in terms of liquid =\",round(htp3g,3),\"kJ/kmol \"\n",
- "#4.using generalised charts\n",
- "#htp=ho-(h2*-h2)+(h2*-h1*)+(h1*-h1);\n",
- "#h2*-h2=Z*R*Tc,\n",
- "#h2*-h1*=9539 kJ/mol, from part 2\n",
- "#h1*-h1=0 ,as ideal gas \n",
- "Z=0.21;#from chart\n",
- "R=8.3145;#gas constant in SI units\n",
- "Tc=647.3;#critical temperature in K\n",
- "htp4=ho+9539/1000-Z*R*Tc/1000;#enthalpy at given temp and pressure in kJ/kmol\n",
- "print \" 4. enthalpy at given temp and pressure in kJ/kmol using compressibility chart = \",round(htp4,3),\"kJ/kmol\"\n",
- "#the answers in book are different as they have not printed the decimals in values"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " 1. Enthalpy of water at given pressure and temperature using value of Cp = -232.258 kJ/kmol\n",
- " 2. Enthalpy of water at given pressure and temperature assuming value od dh = -232.826 kJ/kmol \n",
- " 3.(i) enthalpy at given temp and pressure in kJ/kmol in terms of liquid = -234.08 kJ/kmol \n",
- " 3.(ii) enthalpy at given temp and pressure in kJ/kmol in terms of liquid = -234.074 kJ/kmol \n",
- " 4. enthalpy at given temp and pressure in kJ/kmol using compressibility chart = -233.956 kJ/kmol\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex15.15:Pg-649"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques15\n",
- "#calculatng reversible elecromotive force \n",
- "\n",
- "#1-H2O\n",
- "#2-H2\n",
- "#3-O2\n",
- "#hf-standard enthalpy \n",
- "#sf-standard entropy\n",
- "hf1=-285.830;#kJ\n",
- "hf2=0;#kJ\n",
- "hf3=0;#kJ\n",
- "sf1=69.950;#kJ/K\n",
- "sf2=130.678;#kJ/K\n",
- "sf3=205.148;#kJ/K\n",
- "dH=2*hf1-2*hf2-hf3;#change in enthalpy in kJ\n",
- "dS=2*sf1-2*sf2-sf3;#change in entropy in kJ/K\n",
- "T=298.15;#temperature in K\n",
- "dG=dH-T*dS/1000;#change in gibbs free energy in kJ\n",
- "E=-dG*1000/(96485*4);#emf in V\n",
- "print\" Reversible electromotive Force =\",round(E,3),\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Reversible electromotive Force = 1.229 V\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex15.17:Pg-654"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques17\n",
- "#efficiency of generator and plant\n",
- "\n",
- "q=325000*(3398.3-856.0);#heat transferred to H2O/kg fuel in kJ/kg\n",
- "qv=26700.0*33250;#higher heating value in kJ/kg\n",
- "nst=q/qv*100;#efficiency of steam generator\n",
- "w=81000.0*3600;#net work done in kJ/kg\n",
- "nth=w/qv*100.0;#thermal efficiency\n",
- "print\" Efficiency of generator =\",round(nst,1),\"percent\\n\"\n",
- "print\" Thermal Efficiency =\",round(nth,1),\" percent\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Efficiency of generator = 93.1 percent\n",
- "\n",
- " Thermal Efficiency = 32.8 percent\n"
- ]
- }
- ],
- "prompt_number": 20
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file