diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | 92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch) | |
tree | 205e68d0ce598ac5caca7de839a2934d746cce86 /Fundamentals_Of_Thermodynamics/Chapter12.ipynb | |
parent | b14c13fcc6bb6d01c468805d612acb353ec168ac (diff) | |
download | Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2 Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip |
added books
Diffstat (limited to 'Fundamentals_Of_Thermodynamics/Chapter12.ipynb')
-rwxr-xr-x | Fundamentals_Of_Thermodynamics/Chapter12.ipynb | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/Fundamentals_Of_Thermodynamics/Chapter12.ipynb b/Fundamentals_Of_Thermodynamics/Chapter12.ipynb new file mode 100755 index 00000000..75910c56 --- /dev/null +++ b/Fundamentals_Of_Thermodynamics/Chapter12.ipynb @@ -0,0 +1,486 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e3e9cb7f43080b67fa2a22d273814843783e7598e3258877edb209ca16f99bdc"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER13:Gas Mixtures"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1:Pg-480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques1\n",
+ "#Standard brayton cycle\n",
+ "\n",
+ "#1-Inlet for compressor\n",
+ "#2-Exit for compressor\n",
+ "#T-Temperature at a state\n",
+ "#P-Pressure at a state\n",
+ "T1=288.2;#K\n",
+ "P2=1000.0;#kPa\n",
+ "P1=100.0;#kPa\n",
+ "k=1.4;\n",
+ "T2=T1*(P2/P1)**(1.0-1/k);#K\n",
+ "Cp=1.004;#Specific heat at constant pressure in kJ/kg\n",
+ "wc=Cp*(T2-T1);#compressor work in kJ/kg;\n",
+ "print\" Temperature T2 =\",round(T2,2),\"K\"\n",
+ "print\" Compressor work =\",round(wc,1),\"kJ/kg\"\n",
+ "#3-Turbine Inlet\n",
+ "#4-Turbine Exit\n",
+ "P4=P1;\n",
+ "P3=P2;\n",
+ "T3=1373.2;#K\n",
+ "T4=T3*(P4/P3)**(1-1/k);#K\n",
+ "wt=Cp*(T3-T4);\n",
+ "wnet=wt-wc;\n",
+ "print\" Temperature T3 =\",round(T3,2),\" K\"\n",
+ "print\" Temperature T4 =\",round(T4),\"K\"\n",
+ "print\" Turbine work =\",round(wt,2),\"kJ/kg\"\n",
+ "print\" Net work =\",round(wt-wc,2),\"kJ/kg\"\n",
+ "#2-Also high temperature heat exchanger Inlet\n",
+ "#3-(-do-) Exit\n",
+ "qh=Cp*(T3-T2);#Heat of source in kJ/kg\n",
+ "#4-high temp heat exchanger inlet\n",
+ "#1-(-do-) Exit\n",
+ "ql=Cp*(T4-T1);#Heat of sink in kJ/kg\n",
+ "nth=wnet/qh;\n",
+ "print\" Thermal Efficiency of cycle =\",round(nth*100,2),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Temperature T2 = 556.43 K\n",
+ " Compressor work = 269.3 kJ/kg\n",
+ " Temperature T3 = 1373.2 K\n",
+ " Temperature T4 = 711.0 K\n",
+ " Turbine work = 664.6 kJ/kg\n",
+ " Net work = 395.3 kJ/kg\n",
+ " Thermal Efficiency of cycle = 48.21 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.2:Pg-481"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculation mistake in book\n",
+ "#ques2\n",
+ "#Standard brayton cycle\n",
+ "\n",
+ "#Calculation mistake in book\n",
+ "#1-Inlet for compressor\n",
+ "#2-Exit for compressor\n",
+ "#T-Temperature at a state\n",
+ "#P-Pressure at a state\n",
+ "T1=288.2;#K\n",
+ "P2=1000.0;#kPa\n",
+ "P1=100.0;#kPa\n",
+ "k=1.4;\n",
+ "T2s=T1*(P2/P1)**(1-1/k);#K\n",
+ "nc=.80;#Compressor Efficiency\n",
+ "T2=T1+(T2s-T1)/0.80;\n",
+ "Cp=1.004;#Specific heat at constant pressure in kJ/kg\n",
+ "wc=Cp*(T2-T1);#compressor work in kJ/kg\n",
+ "wc=round(wc)\n",
+ "print\" Temperature T2 =\",round(T2,2),\"K\"\n",
+ "print\" Compressor work =\",(wc),\"kJ/kg\"\n",
+ "#3-Turbine Inlet\n",
+ "#4-Turbine Exit\n",
+ "P4=P1;\n",
+ "P3=P2;\n",
+ "T3=1373.2;#K\n",
+ "T4s=T3*(P4/P3)**(1-1.0/k);#K\n",
+ "nt=0.85;#turbine Efficiency\n",
+ "T4=T3-(T3-T4s)*0.85;\n",
+ "wt=Cp*(T3-T4);\n",
+ "wnet=wt-wc;\n",
+ "print\" Temperature T3 =\",round(T3,1),\"K\"\n",
+ "print\" Temperature T4 =\",round(T4,1),\"K\"\n",
+ "print\" Turbine work =\",round(wt,2),\"kJ/kg\"\n",
+ "print\" Net work =\",round(wt-wc,2),\"kJ/kg\"\n",
+ "#2-Also high temperature heat exchanger Inlet\n",
+ "#3-(-do-) Exit\n",
+ "qh=Cp*(T3-T2);#Heat of source in kJ/kg\n",
+ "#4-high temp heat exchanger inlet\n",
+ "#1-(-do-) Exit\n",
+ "ql=Cp*(T4-T1);#Heat of sink in kJ/kg\n",
+ "nth=wnet/qh;\n",
+ "print\" Thermal Efficiency of cycle =\",round(nth*100),\"percent\"\n",
+ "#some answers are have acceptable difference beacause of approximization in book but here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Temperature T2 = 623.48 K\n",
+ " Compressor work = 337.0 kJ/kg\n",
+ " Temperature T3 = 1373.2 K\n",
+ " Temperature T4 = 810.5 K\n",
+ " Turbine work = 564.91 kJ/kg\n",
+ " Net work = 227.91 kJ/kg\n",
+ " Thermal Efficiency of cycle = 30.0 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.3:Pg-486"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques3\n",
+ "#efficiency of the cycle\n",
+ "\n",
+ "wnet=395.2;#kJ/kg from example no 1\n",
+ "#Tx=T4\n",
+ "Tx=710.8;#K from example no 1\n",
+ "T3=1373.2;#K from example no 1\n",
+ "Cp=1.004;#specific heat in kJ/kg \n",
+ "qh=Cp*(T3-Tx);\n",
+ "nth=wnet/qh;\n",
+ "print\" Thermal efficiency =\",round(nth*100,1),\" percent\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Thermal efficiency = 59.4 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.4:Pg-486"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques4\n",
+ "#Calculation of work in the given cycle\n",
+ "import math\n",
+ "R=0.287;#gas constant \n",
+ "T1=288.2;#compressor temperature K\n",
+ "T2=1373.2;#K turbine temperature K\n",
+ "#Pe/Pi=c=10, Pi/Pe=1/c from example 12.1\n",
+ "c=10.0;\n",
+ "wc=-R*T1*math.log(c);\n",
+ "print\" Isothermal work in compressor =\",round(wc,1),\"kJ/kg\"\n",
+ "wt=-R*T2*math.log(1/c);\n",
+ "print\" Isothermal work in turbine =\",round(wt,1),\"kJ/kg\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Isothermal work in compressor = -190.5 kJ/kg\n",
+ " Isothermal work in turbine = 907.5 kJ/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.5:Pg-491"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques5\n",
+ "#air standard cycle for jet repulsion\n",
+ "import math\n",
+ "#1-compressor inlet\n",
+ "#2-Compressor exit\n",
+ "#P-Pressure at given point\n",
+ "#T-Temperature at given point\n",
+ "P1=100;#kPa\n",
+ "P2=1000;#kPa\n",
+ "T1=288.2;#K\n",
+ "T2=556.8;#K\n",
+ "wc=269.5;#from ex 12.1 work done in compressor in kJ/kg\n",
+ "#2-Burner inlet\n",
+ "#3-Burner exit\n",
+ "P3=1000;#kPa\n",
+ "T3=1373.2;#K\n",
+ "#wc=wt\n",
+ "Cp=1.004;#specific enthalpy of heat at constant pressure in kJ/kg\n",
+ "k=1.4;\n",
+ "T4=T3-wc/Cp;\n",
+ "P4=P3*(T4/T3)**(1-1/k);\n",
+ "#from s4=s5 and h4=h5+v2/2 we get\n",
+ "T5=710.8#K, from second law\n",
+ "v=math.sqrt(2*Cp*1000*(T4-T5));#m/s\n",
+ "print\" Velocity of air leaving the nozel =\",round(v),\"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Velocity of air leaving the nozel = 889.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.6:Pg-494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques6\n",
+ "#air standard refrigeration cycle\n",
+ "\n",
+ "#1-compressor inlet\n",
+ "#2-compressor exit\n",
+ "P1=100;#kPa\n",
+ "P2=500;#kPa\n",
+ "k=1.4;\n",
+ "rp=P2/P1;\n",
+ "cop=(rp**(1-1/k)-1)**-1;\n",
+ "print\" Coefficient of performance =\",round(cop,2)\n",
+ "#3-Expander inlet\n",
+ "#4-Expander exit\n",
+ "P3=P2;\n",
+ "P4=P1;\n",
+ "T3=288.23;#K, given and fixed\n",
+ "T4=T3/(P3/P4)**(1-1/k);\n",
+ "T1=253.2;#K, given\n",
+ "Cp=1.004;#Specific heat at cons pressure in kJ/kg\n",
+ "ql=Cp*(T1-T4);#heat released in kJ/kg\n",
+ "P=1#power required in kW \n",
+ "ms=P/ql;#kg/s\n",
+ "print\" Rate at which the air enter the compressor =\",round(ms,3),\"kg/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Coefficient of performance = 1.71\n",
+ " Rate at which the air enter the compressor = 0.014 kg/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.7:Pg-498"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques7\n",
+ "#the otto cycle\n",
+ "\n",
+ "#1-compressor inlet\n",
+ "#2-compressor exit\n",
+ "P1=100.0;#kPa\n",
+ "T1=288.2;#K\n",
+ "R=0.287;#gas constant\n",
+ "v1=R*T1/P1;#specific volume at inlet in m^3/kg\n",
+ "rv=10.0;#compression ratio given\n",
+ "k=1.4;#constant\n",
+ "T2=T1*rv**(k-1);#K\n",
+ "print\" Temperature at compressor exit, T2 =\",round(T2,1),\"K\"\n",
+ "P2=P1*rv**k;#kPa\n",
+ "print\" Pressure at compressor exit, P2 =\",round(P2/1000,2),\"MPa\"\n",
+ "v2=v1/rv;#specific heat at exit in m^3/kg\n",
+ "#23-heat addition process\n",
+ "#q23=Cv*(T3-T2)=1800 kJ/kg given\n",
+ "q23=1800.0;#kJ/kg heat addition, given\n",
+ "Cv=0.717;#specific heat at constant volume in kJ/kg\n",
+ "T3=T2+q23/Cv;#K\n",
+ "print\" Initial Temperature during heat additon process, T3 =\",round(T3,2),\"K\"\n",
+ "P3=P2*(T3/T2);#kPa\n",
+ "print\" Initial pressure during heat addition process, P3 =\",round(P3/1000,3),\"MPa\"\n",
+ "r=10.0;#k=V4/V3=P3/P4\n",
+ "T4=T3*(1/r)**(k-1);\n",
+ "print\" Final temperature during heat addition process, T4 =\",round(T4,3),\"K\";\n",
+ "P4=P3/r**k;#kPa\n",
+ "print\" Final pressure during heat addition process, P4 =\",round(P4/1000,4),\"MPa\"\n",
+ "nth=1-1/r**(k-1);#thermal efficiency\n",
+ "print\" Thermal efficiency =\",round(nth*100,1),\" percent\"\n",
+ "q41=Cv*(T1-T4);#/heat for process 4-1 in kJ/kg\n",
+ "wnet=q23+q41;\n",
+ "mep=wnet/(v1-v2);#effective mean pressure n kPa\n",
+ "print\" Mean effective pressure =\",round(mep,2),\"kPa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Temperature at compressor exit, T2 = 723.9 K\n",
+ " Pressure at compressor exit, P2 = 2.51 MPa\n",
+ " Initial Temperature during heat additon process, T3 = 3234.39 K\n",
+ " Initial pressure during heat addition process, P3 = 11.223 MPa\n",
+ " Final temperature during heat addition process, T4 = 1287.632 K\n",
+ " Final pressure during heat addition process, P4 = 0.4468 MPa\n",
+ " Thermal efficiency = 60.2 percent\n",
+ " Mean effective pressure = 1455.37 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.8:Pg-501"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ques8\n",
+ "#the diesel cycle\n",
+ "\n",
+ "#1-compressor inlet\n",
+ "#2-compressor exit\n",
+ "P1=100;#kPa\n",
+ "T1=288.2;#K\n",
+ "R=0.287;#gas constant\n",
+ "v1=R*T1/P1;#specific volume at inlet in m^3/kg\n",
+ "rv=20;#compression ratio given\n",
+ "k=1.4;#constant\n",
+ "T2=T1*rv**(k-1);#K\n",
+ "print\" Temperature at compressor exit, T2 =\",round(T2,1),\"K\"\n",
+ "P2=P1*rv**k;#kPa\n",
+ "print\" Pressure at compressor exit, P2 =\",round(P2/1000,3),\" MPa\"\n",
+ "v2=v1/rv;#specific heat at exit in m^3/kg\n",
+ "#23-heat addition process\n",
+ "#q23=Cv*(T3-T2)=1800 kJ/kg given\n",
+ "q23=1800;#kJ/kg heat addition, given\n",
+ "Cv=.717;\n",
+ "Cp=1.004;#specific heat at constant pressure in kJ/kg\n",
+ "T3=T2+q23/Cp;#K\n",
+ "print\" Initial Temperature during heat addition process, T3 =\",round(T3,2),\"K\"\n",
+ "r=T3/T2;#T3/T2=V3/V2=r\n",
+ "v3=r*v2;\n",
+ "T4=T3/(v1/v3)**(k-1);\n",
+ "print\" Final temperature during heat addition process, T4 =\",round(T4),\"K\"\n",
+ "q41=Cv*(T1-T4);#/heat for process 4-1 in kJ/kg\n",
+ "wnet=q23+q41;\n",
+ "mep=wnet/(v1-v2);#effective mean pressure in kPa\n",
+ "qh=1800;#heat transfer in kJ/kg\n",
+ "nth=wnet/qh;#thermal efficiency\n",
+ "\n",
+ "print\" Thermal efficiency =\",round(nth*100,1),\"percent\"\n",
+ "print\" Mean effective pressure =\",round(mep,2),\"kPa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Temperature at compressor exit, T2 = 955.2 K\n",
+ " Pressure at compressor exit, P2 = 6.629 MPa\n",
+ " Initial Temperature during heat addition process, T3 = 2748.05 K\n",
+ " Final temperature during heat addition process, T4 = 1265.0 K\n",
+ " Thermal efficiency = 61.1 percent\n",
+ " Mean effective pressure = 1399.18 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |