From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Fundamentals_Of_Thermodynamics/Chapter12.ipynb | 486 +++++++++++++++++++++++++ 1 file changed, 486 insertions(+) create mode 100755 Fundamentals_Of_Thermodynamics/Chapter12.ipynb (limited to 'Fundamentals_Of_Thermodynamics/Chapter12.ipynb') diff --git a/Fundamentals_Of_Thermodynamics/Chapter12.ipynb b/Fundamentals_Of_Thermodynamics/Chapter12.ipynb new file mode 100755 index 00000000..75910c56 --- /dev/null +++ b/Fundamentals_Of_Thermodynamics/Chapter12.ipynb @@ -0,0 +1,486 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:e3e9cb7f43080b67fa2a22d273814843783e7598e3258877edb209ca16f99bdc" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "CHAPTER13:Gas Mixtures" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.1:Pg-480" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques1\n", + "#Standard brayton cycle\n", + "\n", + "#1-Inlet for compressor\n", + "#2-Exit for compressor\n", + "#T-Temperature at a state\n", + "#P-Pressure at a state\n", + "T1=288.2;#K\n", + "P2=1000.0;#kPa\n", + "P1=100.0;#kPa\n", + "k=1.4;\n", + "T2=T1*(P2/P1)**(1.0-1/k);#K\n", + "Cp=1.004;#Specific heat at constant pressure in kJ/kg\n", + "wc=Cp*(T2-T1);#compressor work in kJ/kg;\n", + "print\" Temperature T2 =\",round(T2,2),\"K\"\n", + "print\" Compressor work =\",round(wc,1),\"kJ/kg\"\n", + "#3-Turbine Inlet\n", + "#4-Turbine Exit\n", + "P4=P1;\n", + "P3=P2;\n", + "T3=1373.2;#K\n", + "T4=T3*(P4/P3)**(1-1/k);#K\n", + "wt=Cp*(T3-T4);\n", + "wnet=wt-wc;\n", + "print\" Temperature T3 =\",round(T3,2),\" K\"\n", + "print\" Temperature T4 =\",round(T4),\"K\"\n", + "print\" Turbine work =\",round(wt,2),\"kJ/kg\"\n", + "print\" Net work =\",round(wt-wc,2),\"kJ/kg\"\n", + "#2-Also high temperature heat exchanger Inlet\n", + "#3-(-do-) Exit\n", + "qh=Cp*(T3-T2);#Heat of source in kJ/kg\n", + "#4-high temp heat exchanger inlet\n", + "#1-(-do-) Exit\n", + "ql=Cp*(T4-T1);#Heat of sink in kJ/kg\n", + "nth=wnet/qh;\n", + "print\" Thermal Efficiency of cycle =\",round(nth*100,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Temperature T2 = 556.43 K\n", + " Compressor work = 269.3 kJ/kg\n", + " Temperature T3 = 1373.2 K\n", + " Temperature T4 = 711.0 K\n", + " Turbine work = 664.6 kJ/kg\n", + " Net work = 395.3 kJ/kg\n", + " Thermal Efficiency of cycle = 48.21 %\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.2:Pg-481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculation mistake in book\n", + "#ques2\n", + "#Standard brayton cycle\n", + "\n", + "#Calculation mistake in book\n", + "#1-Inlet for compressor\n", + "#2-Exit for compressor\n", + "#T-Temperature at a state\n", + "#P-Pressure at a state\n", + "T1=288.2;#K\n", + "P2=1000.0;#kPa\n", + "P1=100.0;#kPa\n", + "k=1.4;\n", + "T2s=T1*(P2/P1)**(1-1/k);#K\n", + "nc=.80;#Compressor Efficiency\n", + "T2=T1+(T2s-T1)/0.80;\n", + "Cp=1.004;#Specific heat at constant pressure in kJ/kg\n", + "wc=Cp*(T2-T1);#compressor work in kJ/kg\n", + "wc=round(wc)\n", + "print\" Temperature T2 =\",round(T2,2),\"K\"\n", + "print\" Compressor work =\",(wc),\"kJ/kg\"\n", + "#3-Turbine Inlet\n", + "#4-Turbine Exit\n", + "P4=P1;\n", + "P3=P2;\n", + "T3=1373.2;#K\n", + "T4s=T3*(P4/P3)**(1-1.0/k);#K\n", + "nt=0.85;#turbine Efficiency\n", + "T4=T3-(T3-T4s)*0.85;\n", + "wt=Cp*(T3-T4);\n", + "wnet=wt-wc;\n", + "print\" Temperature T3 =\",round(T3,1),\"K\"\n", + "print\" Temperature T4 =\",round(T4,1),\"K\"\n", + "print\" Turbine work =\",round(wt,2),\"kJ/kg\"\n", + "print\" Net work =\",round(wt-wc,2),\"kJ/kg\"\n", + "#2-Also high temperature heat exchanger Inlet\n", + "#3-(-do-) Exit\n", + "qh=Cp*(T3-T2);#Heat of source in kJ/kg\n", + "#4-high temp heat exchanger inlet\n", + "#1-(-do-) Exit\n", + "ql=Cp*(T4-T1);#Heat of sink in kJ/kg\n", + "nth=wnet/qh;\n", + "print\" Thermal Efficiency of cycle =\",round(nth*100),\"percent\"\n", + "#some answers are have acceptable difference beacause of approximization in book but here calculations are precise" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Temperature T2 = 623.48 K\n", + " Compressor work = 337.0 kJ/kg\n", + " Temperature T3 = 1373.2 K\n", + " Temperature T4 = 810.5 K\n", + " Turbine work = 564.91 kJ/kg\n", + " Net work = 227.91 kJ/kg\n", + " Thermal Efficiency of cycle = 30.0 percent\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.3:Pg-486" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques3\n", + "#efficiency of the cycle\n", + "\n", + "wnet=395.2;#kJ/kg from example no 1\n", + "#Tx=T4\n", + "Tx=710.8;#K from example no 1\n", + "T3=1373.2;#K from example no 1\n", + "Cp=1.004;#specific heat in kJ/kg \n", + "qh=Cp*(T3-Tx);\n", + "nth=wnet/qh;\n", + "print\" Thermal efficiency =\",round(nth*100,1),\" percent\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Thermal efficiency = 59.4 percent\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.4:Pg-486" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques4\n", + "#Calculation of work in the given cycle\n", + "import math\n", + "R=0.287;#gas constant \n", + "T1=288.2;#compressor temperature K\n", + "T2=1373.2;#K turbine temperature K\n", + "#Pe/Pi=c=10, Pi/Pe=1/c from example 12.1\n", + "c=10.0;\n", + "wc=-R*T1*math.log(c);\n", + "print\" Isothermal work in compressor =\",round(wc,1),\"kJ/kg\"\n", + "wt=-R*T2*math.log(1/c);\n", + "print\" Isothermal work in turbine =\",round(wt,1),\"kJ/kg\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Isothermal work in compressor = -190.5 kJ/kg\n", + " Isothermal work in turbine = 907.5 kJ/kg\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.5:Pg-491" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques5\n", + "#air standard cycle for jet repulsion\n", + "import math\n", + "#1-compressor inlet\n", + "#2-Compressor exit\n", + "#P-Pressure at given point\n", + "#T-Temperature at given point\n", + "P1=100;#kPa\n", + "P2=1000;#kPa\n", + "T1=288.2;#K\n", + "T2=556.8;#K\n", + "wc=269.5;#from ex 12.1 work done in compressor in kJ/kg\n", + "#2-Burner inlet\n", + "#3-Burner exit\n", + "P3=1000;#kPa\n", + "T3=1373.2;#K\n", + "#wc=wt\n", + "Cp=1.004;#specific enthalpy of heat at constant pressure in kJ/kg\n", + "k=1.4;\n", + "T4=T3-wc/Cp;\n", + "P4=P3*(T4/T3)**(1-1/k);\n", + "#from s4=s5 and h4=h5+v2/2 we get\n", + "T5=710.8#K, from second law\n", + "v=math.sqrt(2*Cp*1000*(T4-T5));#m/s\n", + "print\" Velocity of air leaving the nozel =\",round(v),\"m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of air leaving the nozel = 889.0 m/s\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.6:Pg-494" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques6\n", + "#air standard refrigeration cycle\n", + "\n", + "#1-compressor inlet\n", + "#2-compressor exit\n", + "P1=100;#kPa\n", + "P2=500;#kPa\n", + "k=1.4;\n", + "rp=P2/P1;\n", + "cop=(rp**(1-1/k)-1)**-1;\n", + "print\" Coefficient of performance =\",round(cop,2)\n", + "#3-Expander inlet\n", + "#4-Expander exit\n", + "P3=P2;\n", + "P4=P1;\n", + "T3=288.23;#K, given and fixed\n", + "T4=T3/(P3/P4)**(1-1/k);\n", + "T1=253.2;#K, given\n", + "Cp=1.004;#Specific heat at cons pressure in kJ/kg\n", + "ql=Cp*(T1-T4);#heat released in kJ/kg\n", + "P=1#power required in kW \n", + "ms=P/ql;#kg/s\n", + "print\" Rate at which the air enter the compressor =\",round(ms,3),\"kg/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Coefficient of performance = 1.71\n", + " Rate at which the air enter the compressor = 0.014 kg/s\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.7:Pg-498" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques7\n", + "#the otto cycle\n", + "\n", + "#1-compressor inlet\n", + "#2-compressor exit\n", + "P1=100.0;#kPa\n", + "T1=288.2;#K\n", + "R=0.287;#gas constant\n", + "v1=R*T1/P1;#specific volume at inlet in m^3/kg\n", + "rv=10.0;#compression ratio given\n", + "k=1.4;#constant\n", + "T2=T1*rv**(k-1);#K\n", + "print\" Temperature at compressor exit, T2 =\",round(T2,1),\"K\"\n", + "P2=P1*rv**k;#kPa\n", + "print\" Pressure at compressor exit, P2 =\",round(P2/1000,2),\"MPa\"\n", + "v2=v1/rv;#specific heat at exit in m^3/kg\n", + "#23-heat addition process\n", + "#q23=Cv*(T3-T2)=1800 kJ/kg given\n", + "q23=1800.0;#kJ/kg heat addition, given\n", + "Cv=0.717;#specific heat at constant volume in kJ/kg\n", + "T3=T2+q23/Cv;#K\n", + "print\" Initial Temperature during heat additon process, T3 =\",round(T3,2),\"K\"\n", + "P3=P2*(T3/T2);#kPa\n", + "print\" Initial pressure during heat addition process, P3 =\",round(P3/1000,3),\"MPa\"\n", + "r=10.0;#k=V4/V3=P3/P4\n", + "T4=T3*(1/r)**(k-1);\n", + "print\" Final temperature during heat addition process, T4 =\",round(T4,3),\"K\";\n", + "P4=P3/r**k;#kPa\n", + "print\" Final pressure during heat addition process, P4 =\",round(P4/1000,4),\"MPa\"\n", + "nth=1-1/r**(k-1);#thermal efficiency\n", + "print\" Thermal efficiency =\",round(nth*100,1),\" percent\"\n", + "q41=Cv*(T1-T4);#/heat for process 4-1 in kJ/kg\n", + "wnet=q23+q41;\n", + "mep=wnet/(v1-v2);#effective mean pressure n kPa\n", + "print\" Mean effective pressure =\",round(mep,2),\"kPa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Temperature at compressor exit, T2 = 723.9 K\n", + " Pressure at compressor exit, P2 = 2.51 MPa\n", + " Initial Temperature during heat additon process, T3 = 3234.39 K\n", + " Initial pressure during heat addition process, P3 = 11.223 MPa\n", + " Final temperature during heat addition process, T4 = 1287.632 K\n", + " Final pressure during heat addition process, P4 = 0.4468 MPa\n", + " Thermal efficiency = 60.2 percent\n", + " Mean effective pressure = 1455.37 kPa\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12.8:Pg-501" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques8\n", + "#the diesel cycle\n", + "\n", + "#1-compressor inlet\n", + "#2-compressor exit\n", + "P1=100;#kPa\n", + "T1=288.2;#K\n", + "R=0.287;#gas constant\n", + "v1=R*T1/P1;#specific volume at inlet in m^3/kg\n", + "rv=20;#compression ratio given\n", + "k=1.4;#constant\n", + "T2=T1*rv**(k-1);#K\n", + "print\" Temperature at compressor exit, T2 =\",round(T2,1),\"K\"\n", + "P2=P1*rv**k;#kPa\n", + "print\" Pressure at compressor exit, P2 =\",round(P2/1000,3),\" MPa\"\n", + "v2=v1/rv;#specific heat at exit in m^3/kg\n", + "#23-heat addition process\n", + "#q23=Cv*(T3-T2)=1800 kJ/kg given\n", + "q23=1800;#kJ/kg heat addition, given\n", + "Cv=.717;\n", + "Cp=1.004;#specific heat at constant pressure in kJ/kg\n", + "T3=T2+q23/Cp;#K\n", + "print\" Initial Temperature during heat addition process, T3 =\",round(T3,2),\"K\"\n", + "r=T3/T2;#T3/T2=V3/V2=r\n", + "v3=r*v2;\n", + "T4=T3/(v1/v3)**(k-1);\n", + "print\" Final temperature during heat addition process, T4 =\",round(T4),\"K\"\n", + "q41=Cv*(T1-T4);#/heat for process 4-1 in kJ/kg\n", + "wnet=q23+q41;\n", + "mep=wnet/(v1-v2);#effective mean pressure in kPa\n", + "qh=1800;#heat transfer in kJ/kg\n", + "nth=wnet/qh;#thermal efficiency\n", + "\n", + "print\" Thermal efficiency =\",round(nth*100,1),\"percent\"\n", + "print\" Mean effective pressure =\",round(mep,2),\"kPa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Temperature at compressor exit, T2 = 955.2 K\n", + " Pressure at compressor exit, P2 = 6.629 MPa\n", + " Initial Temperature during heat addition process, T3 = 2748.05 K\n", + " Final temperature during heat addition process, T4 = 1265.0 K\n", + " Thermal efficiency = 61.1 percent\n", + " Mean effective pressure = 1399.18 kPa\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit