diff options
author | Trupti Kini | 2016-09-08 23:30:23 +0600 |
---|---|---|
committer | Trupti Kini | 2016-09-08 23:30:23 +0600 |
commit | cd810407802a7f89116285be29c37f8e4c477111 (patch) | |
tree | fb007f4a988144317108cc9107dec67aa2ab7176 /Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb | |
parent | b65760c382e922833225d6783d66baf401474df5 (diff) | |
download | Python-Textbook-Companions-cd810407802a7f89116285be29c37f8e4c477111.tar.gz Python-Textbook-Companions-cd810407802a7f89116285be29c37f8e4c477111.tar.bz2 Python-Textbook-Companions-cd810407802a7f89116285be29c37f8e4c477111.zip |
Added(A)/Deleted(D) following books
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch1.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch2.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch3.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch5.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch6.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch7.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/README.txt
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/screenshots/6.1.png
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/screenshots/6.png
A Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/screenshots/7.png
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter1.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter2.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter3.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter4.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter5.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter6.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter7.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter8.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/Chapter9.ipynb
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/README.txt
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/screenshots/1.png
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/screenshots/2.png
A OpAmps_And_Linear_Integrated_Circuits_by_Gayakwad/screenshots/8.png
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter10_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter11_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter13_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter16_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter17_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter18_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter19_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter20_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter21_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter22_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter23_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter24_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter25_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter26_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter2_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter6_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter7_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter8_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter9_6.ipynb
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter10_ac_load_line_5.png
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter18_clipping_ckt_output_6.png
A Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter8_dc_load_line_6.png
Diffstat (limited to 'Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb')
-rw-r--r-- | Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb | 1059 |
1 files changed, 1059 insertions, 0 deletions
diff --git a/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb b/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb new file mode 100644 index 00000000..07dd71a0 --- /dev/null +++ b/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch4.ipynb @@ -0,0 +1,1059 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Junction Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.1 page No. 146" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Majority carrier electron concentration is 5.97e+13 cm**-3\n", + "Minority carrier hole concentration is 9.7e+12 cm**-3\n" + ] + } + ], + "source": [ + "#Exa4.1\n", + "#find the Majority and Minority carrier hole concentration\n", + "\n", + "#given data\n", + "import math\n", + "T=300\t\t\t #in Kelvin\n", + "ND=5*10**13\t\t #in cm**-3\n", + "NA=0\t\t\t #in cm**-3\n", + "ni=2.4*10**13\t\t#in cm**-3\n", + "\n", + "#Calculation\n", + "no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2)\t#in cm**-3\n", + "po=ni**2/no\t\t#in cm**-3\n", + "\n", + "#Result\n", + "print\"Majority carrier electron concentration is \",round(no,-11),\"cm**-3\"\n", + "print\"Minority carrier hole concentration is \",round(po,-11),\" cm**-3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.2 Page No.146" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Majority carrier electron concentration is 1e+16 cm**-3\n", + "Minority carrier hole concentration is 22500.0 cm**-3\n" + ] + } + ], + "source": [ + "#Exa4.2\n", + "#find the Majority and Minority carrier hole concentration\n", + "\n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=10**16\t\t#in cm**-3\n", + "NA=0\t\t\t #in cm**-3\n", + "ni=1.5*10**10\t\t#in cm**-3\n", + "\n", + "#Calculation\n", + "no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2)\t#in cm**-3\n", + "po=ni**2/no\t\t#in cm**-3\n", + "\n", + "#result\n", + "print\"Majority carrier electron concentration is \",no,\"cm**-3\"\n", + "print\"Minority carrier hole concentration is \",round(po,0),\" cm**-3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.3 Page No. 147" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Majority carrier hole concentration is 7e+15 cm**-3\n", + "Minority carrier electron concentration is 36571.0 cm**-3\n" + ] + } + ], + "source": [ + "#Exa4.3\n", + "#find the Majority and Minority carrier hole concentration\n", + "\n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=3*10**15\t\t#in cm**-3\n", + "NA=10**16\t\t#in cm**-3\n", + "ni=1.6*10**10\t\t#in cm**-3\n", + "\n", + "#Calculation\n", + "po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0)\t#in cm**-3\n", + "no=ni**2/po\t\t#in cm**-3\n", + "\n", + "#Result\n", + "print\"Majority carrier hole concentration is\",round(po,-8),\" cm**-3\"\n", + "print\"Minority carrier electron concentration is \",round(no,0),\" cm**-3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.4 Page No. 147" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The maximum Temprature is 642.0 K\n" + ] + } + ], + "source": [ + "#Example 4.4\n", + "#What is maximum Temprature\n", + "\n", + "#Given \n", + "import math\n", + "ND=3*10**15\t\t#in cm**-3\n", + "Eg=1.12 #eV\n", + "k=8.62*10**-5 #eV/k\n", + "Nc=2.8*10**19\n", + "Nv=1.04*10**19\n", + "\n", + "#Calculation\n", + "import math\n", + "# from the equation po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0)\t#in cm**-3\n", + "No=1.05*ND\n", + "ni=math.sqrt((No-ND/2.0)**2-0.25*ND**2)\n", + "#From ni**2=Nc*Nv*exp(-Eg/(k*t))\n", + "T=Eg/(-math.log(ni**2/(Nc*Nv))*k)\n", + "\n", + "#Result\n", + "print \"The maximum Temprature is \",round(T,1),\"K\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.5 Page No. 151" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Built in potential barrier is 0.7532 V\n" + ] + } + ], + "source": [ + "#Exa4.5\n", + "#determine the built in potential\n", + "\n", + "#given data\n", + "import math\n", + "T=300\t\t#in Kelvin\n", + "ND=10**15\t#in cm**-3\n", + "NA=10**18\t#in cm**-3\n", + "ni=1.5*10**10\t#in cm**-3\n", + "VT=T/11600.0\t#in Volts\n", + "\n", + "#Calculation\n", + "Vbi=VT*math.log(NA*ND/ni**2)\t#in Volts\n", + "\n", + "#result\n", + "print\"Built in potential barrier is\",round(Vbi,4),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.6 Page No.151" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Contact potential is 0.5745 V\n" + ] + } + ], + "source": [ + "#Exa4.6\n", + "#What is Contact Potential.\n", + "import math\n", + "#given data\n", + "T=300\t\t #in Kelvin\n", + "ND=10**21\t #in m**-3\n", + "NA=10**21\t #in m**-3\n", + "ni=1.5*10**16 #in m**-3\n", + "VT=T/11600.0\t#in Volts\n", + "\n", + "#Calculation\n", + "import math\n", + "Vo=VT*math.log(NA*ND/ni**2)\t#in Volts\n", + "\n", + "#result\n", + "print\"Contact potential is\",round(Vo,4),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.7 Page No. 154" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Space charge width is 0.95 micro meter\n", + "At metallurgical junction, i.e for x=0 the electric field is -13345.0 V\n" + ] + } + ], + "source": [ + "#Exa4.7\n", + "#Determine the space charge.\n", + "\n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=10**15\t\t#in cm**-3\n", + "NA=10**16\t\t#in cm**-3\n", + "ni=1.5*10**10\t\t#in cm**-3\n", + "VT=T/11600.0\t\t#in Volts\n", + "e=1.6*10**-19\t #in Coulamb\n", + "\n", + "#calculation\n", + "epsilon=11.7*8.854*10**-14\t #constant\n", + "Vbi=VT*math.log(NA*ND/ni**2)\t\t#in Volts\n", + "SCW=math.sqrt((2*epsilon*Vbi/e)*(NA+ND)/(NA*ND))#in cm\n", + "SCW=SCW*10**4 #in uMeter\n", + "xn=0.864\t\t#in uM\n", + "xp=0.086\t\t#in uM\n", + "Emax=-e*ND*xn/epsilon\t#in V/cm\n", + "\n", + "#result\n", + "print\"Space charge width is\",round(SCW,2),\"micro meter\"\n", + "print\"At metallurgical junction, i.e for x=0 the electric field is \",round(Emax/10000,0),\"V\"#Note : Ans in the book is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.8 Page No.160" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New position of fermi level is 0.328 V\n" + ] + } + ], + "source": [ + "#Exa4.8\n", + "#Find the new position of fermi level\n", + "\n", + "#given data\n", + "import math\n", + "Ecf=0.3 #in Volts\n", + "T=27.0+273.0 #in Kelvin\n", + "delT=55 #in degree centigrade\n", + "\n", + "#calculation\n", + "#formula : Ecf=Ec-Ef=K*T*math.log(nc/ND)\n", + "#let K*math.log(nc/ND)=y\n", + "#Ecf=Ec-Ef=T*y\n", + "y=Ecf/T #assumed\n", + "Tnew=273+55 #in Kelvin\n", + "EcfNEW=y*Tnew #in Volts\n", + "\n", + "#result\n", + "print\"New position of fermi level is \",round(EcfNEW,4),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.9 Page No. 161" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Contact potential is 0.19 V\n" + ] + } + ], + "source": [ + "#Exa4.9\n", + "#Determine the Contact Potential\n", + "\n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=8*10**14\t\t#in cm**-3\n", + "NA=8*10**14\t\t#in cm**-3\n", + "ni=2*10**13\t\t#in cm**-3\n", + "k=8.61*10**-5\t\t#in eV/K\n", + "\n", + "#calculation\n", + "Vo=k*T*math.log(NA*ND/ni**2)\t#in Volts\n", + "\n", + "#Result\n", + "print\"Contact potential is \",round(Vo,2),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.10 page No.161" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hole concentration in cm**-3 : 1.3e+04 /cm**3\n", + "electron concentration in cm**-3 :5.3e+04 /cm**3\n", + "\n", + "NOTE:\n", + "Slight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of 1.63166259315e+16\n", + "\n", + "The given Si is of N-type\n" + ] + } + ], + "source": [ + "#Example 4.10\n", + "#(i)Find the hole and electron concentration \n", + "#Is this Silicon P or N type\n", + "from math import e\n", + "#given data\n", + "ND=2*10**16 #in cm**-3\n", + "NA=5*10**15 #in cm**-3\n", + "Ao=4.83*10**21 \t#constant\n", + "T=300.0\t\t\t #in Kelvin\n", + "EG=1.1\t \t \t #in eV\n", + "kT=0.026 \t\t#in eV\n", + "\n", + "#Calculation\n", + "ni=Ao*T**(1.5)*math.exp(-EG/(2*kT))\t\t#in m**-3\n", + "p=(ni/10**6)**2/ND\t\t\t#in cm**-3\n", + "n=((ni/10**6)**2)/NA\t\t\t#in cm**-3\n", + "\n", + "#Result\n", + "\n", + "print\"Hole concentration in cm**-3 : %.1e\"%round(p,0),\"/cm**3\"\n", + "print\"electron concentration in cm**-3 :%.1e\"%round(n,0),\"/cm**3\"\n", + "print\"\\nNOTE:\\nSlight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of\",ni\n", + "if n < e:\n", + " \n", + " print\"\\n\\nthe given Si is of P-type\" \n", + "else:\n", + " print \"\\nThe given Si is of N-type\"\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.11 Page No. 168" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current flowing through the circuit is 43.0 mA\n" + ] + } + ], + "source": [ + "#Exa4.11\n", + "#Determine current\n", + "\n", + "#In given circuit \n", + "V=5\t\t #in volts\n", + "Vo=0.7\t #in Volts\n", + "R=100\t\t#in Kohm\n", + "\n", + "#Calculation\n", + "I=(V-Vo)/R\t#in Ampere\n", + "\n", + "#result\n", + "print\"Current flowing through the circuit is\",round(I*1000,0),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.12 Page No. 168" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltagee VA is 13.6 V\n" + ] + } + ], + "source": [ + "#Exa4.12\n", + "#Find the Voltage VA\n", + "\n", + "#In given circuit \n", + "V=15\t\t\t #in volts\n", + "Vo=0.7\t\t\t#in Volts\n", + "R=7\t \t \t#in Kohm\n", + "\n", + "#Calculation\n", + "I=(V-2*Vo)/R\n", + "I=(V-2*Vo)/R\t\t#in mAmpere\n", + "VA=I*R\t \t\t#in Volts\n", + "\n", + "#result\n", + "print\"Voltagee VA is \",VA,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.13 Page No.169" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Voltage VA is 14.7 V\n" + ] + } + ], + "source": [ + "#Example 4.13\n", + "#Determine the Voltage VA\n", + "\n", + "#Given\n", + "V=15 #V, voltage\n", + "Vb=0.3 #V, Barrier Potential #When supply is switched on\n", + "\n", + "#Calculation\n", + "VA=V-Vb\n", + "\n", + "#Result\n", + "print\"The Voltage VA is \",VA,\"V\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.14 Page No.172" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Temperature coefficient f zener diode is -0.053 percent\n" + ] + } + ], + "source": [ + "#Exa4.14\n", + "#find Temperature coefficient f zener diode\n", + "\n", + "#given data\n", + "Vz=5\t\t\t#in volts\n", + "to=25\t\t\t#in degree centigrade\n", + "t=100\t\t\t#in degree centigrade\n", + "Vdrop=4.8\t\t#in Volts\n", + "\n", + "#calculation\n", + "delVz=Vdrop-Vz\t\t#in Volts\n", + "delt=t-to\t\t#in degree centigrade\n", + "TempCoeff=delVz*100/(Vz*delt)\n", + "\n", + "#result\n", + "print\"Temperature coefficient f zener diode is \",round(TempCoeff,3),\"percent\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.15 Page No. 174" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Output voltage will be equal to Vout= 8.0 Volts\n", + "(b)Voltage across Rs is Rs= 4.0 V\n", + "(c)Current through zener diode is Iz= 0.0 mA\n" + ] + } + ], + "source": [ + "#Exa4.15\n", + "#Find (a)output Voltage (b) Voltage across Rs (c) Current\n", + "\n", + "#given data\n", + "Vz=8.0\t\t\t#in volts\n", + "VS=12.0\t\t\t#in volts\n", + "RL=10.0\t\t\t#in Kohm\n", + "Rs=5.0\t\t\t#in Kohm\n", + "\n", + "#part (a)\n", + "Vout=Vz\t\t\t#in volts\n", + "\n", + "#part (b)\n", + "Vrs=VS-Vout\t\t#in volts\n", + "IL=Vout/RL \t\t#in mAmpere\n", + "Is=(VS-Vout)/Rs\t#in mAmpere\n", + "\n", + "#part c\n", + "Iz=Is-IL\t \t#in mAmpere\n", + "\n", + "#result\n", + "print\"(a)Output voltage will be equal to Vout=\",Vout,\" Volts\"\n", + "print\"(b)Voltage across Rs is Rs=\",Vrs,\"V\"\n", + "print\"(c)Current through zener diode is Iz=\",round(Iz,1),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.16 Page No. 175" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum zener diode current is 9.0 mA\n", + "Minimum zener diode current is 1.0 mA\n" + ] + } + ], + "source": [ + "#Exa4.16\n", + "#Find the min and max value of zener diode current\n", + "\n", + "#given data\n", + "Vz=50.\t\t\t#in volts\n", + "VSmax=120.0\t\t#in volts\n", + "VSmin=80.0\t\t#in volts\n", + "RL=10.0\t\t\t#in Kohm\n", + "Rs=5.0\t\t\t#in Kohm\n", + "\n", + "#Calculation\n", + "Vout=Vz\t\t\t#in Volts\n", + "IL=Vout/RL\t\t#in mAmpere\n", + "\n", + "ISmax=(VSmax-Vout)/Rs\t#in mAmpere\n", + "Izmax=ISmax-IL\t\t#in mA\n", + "Ismin=(VSmin-Vout)/Rs#in mAmpere\n", + "Izmin=Ismin-IL#in mA\n", + "\n", + "#Result\n", + "print\"Maximum zener diode current is \",Izmax,\"mA\"\n", + "print\"Minimum zener diode current is \",Izmin,\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.17 Page No. 175" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sereis Resistance is 192.3 ohm\n", + "The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA\n", + "when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \n", + "Thus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \n", + "Thus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. \n" + ] + } + ], + "source": [ + "#Exa4.17\n", + "#Design a regulator\n", + "\n", + "#given data\n", + "Vz=15\t\t#in volts\n", + "Izk=6.0\t\t#in mA\n", + "Vout=15\t\t#in Volts\n", + "Vs=20\t\t#in Volts\n", + "ILmin=10.0\t#in mA\n", + "ILmax=20.0\t#in mA\n", + "RS=(Vs-Vz)*1000/(ILmax+Izk)\t#in ohm\n", + "\n", + "#result\n", + "print\"sereis Resistance is \",round(RS,1),\"ohm\"\n", + "print\"The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA\"\n", + "print\"when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \\nThus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \\nThus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. \"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.18 Page No. 175" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When zener open circuited Voltage across load is 8.73 V\n", + "Zener current is 0 mA\n", + "Power is 0.0 watt\n" + ] + } + ], + "source": [ + "#Exa4.18\n", + "#Determine Vl,Iz,Pz\n", + "\n", + "#given data\n", + "Vs=16.0\t\t #in volts\n", + "RL=1.2\t\t\t#in Kohm\n", + "Rs=1.0\t\t\t#in Kohm\n", + "\n", + "#calculation\n", + "#If zener open circuited\n", + "VL=Vs*RL/(Rs+RL)\t#in Volts\n", + "Iz=0\t\t\t#in mA\n", + "Pz=VL*Iz\t\t#in watts\n", + "\n", + "#result\n", + "print\"When zener open circuited Voltage across load is \",round(VL,2),\"V\"\n", + "print\"Zener current is \",Iz,\"mA\"\n", + "print\"Power is\",Pz,\"watt\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.19 Page No. 126" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Zener diode will not conduct and VL= 9.5 V\n", + "When RL=200 ohm\n", + "IL is 47.62 mA\n", + "IR is 47.62 mA\n", + "Iz in mA: 0.0 mA\n", + "Zener diode will not conduct and VL= 3.7 V\n", + "When RL=50 ohm\n", + "IL is 74.07 mA\n", + "IR is 74.07 mA\n", + "Iz in mA: 0 mA\n" + ] + } + ], + "source": [ + "#Exa4.19\n", + "#determine VL,IL,IZ,IR\n", + "\n", + "#given data\n", + "Vin=20\t\t\t#in volts\n", + "Rs=220.0\t\t\t#in Kohm\n", + "Vz=10\t\t \t#in volts\n", + "RL2=50.0\t\t\t#in Kohm\n", + "RL1=200\t\t\t#in Kohm\n", + "\n", + "#calculation\n", + "# part (i) RL=50\t#in Kohm\n", + "VL1=Vin*RL1/(RL+Rs)\n", + "IR=Vin/(Rs+RL)\t#in mA\n", + "IL=IR\t\t \t#in mA\n", + "IZ=0\t\t\t #in mA\n", + "\n", + "if VL1< Vz:\n", + " \n", + " print\"Zener diode will not conduct and VL=\",round(VL1,1),\"V\" \n", + "else:\n", + " print \"Zener diode will conduct\"\n", + "\n", + " \n", + "#Result\n", + "print\"When RL=200 ohm\"\n", + "print\"IL is\",round(IL*1000,2),\"mA\"\n", + "print\"IR is\",round(IR*10**3,2),\"mA\"\n", + "print\"Iz in mA: \",round(IZ,0),\"mA\"\n", + "\n", + "# part (ii) RL=200#in Kohm\n", + "RL=200\t\t\t#in Kohm\n", + "VL2=Vin*RL2/(RL2+Rs)\n", + "IR=Vin/(Rs+RL2)\t\t#in mA\n", + "IL=IR\t\t\t#in mA\n", + "IZ=0\t\t\t#in mA\n", + "\n", + "#result\n", + "if VL2< Vz:\n", + " \n", + " print\"Zener diode will not conduct and VL=\",round(VL2,1),\"V\" \n", + "else:\n", + " print \"Zener diode will conduct\"\n", + "\n", + "print\"When RL=50 ohm\"\n", + "print\"IL is\",round(IL*1000,2),\"mA\"\n", + "print\"IR is\",round(IR*10**3,2),\"mA\"\n", + "print\"Iz in mA: \",IZ,\"mA\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.20 Page No. 176" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zener diode is ON state\n", + "Hence the voltage dropp across the 5 Kohm resistor in Volts is 50 V\n" + ] + } + ], + "source": [ + "#Exa4.20\n", + "#Find the voltage drop across the resistance\n", + "\n", + "#given data\n", + "RL=10.0\t\t\t #in Kohm\n", + "Rs=5.0 #in Kohm\n", + "Vin=100\t\t\t #in Volts\n", + "\n", + "#Calculation\n", + "V=Vin*RL/(RL+Rs)\t#in Volt\n", + "VZ=50\t\t\t#in Volts\n", + "VL=VZ\t\t\t#in volts\n", + "#Apply KVL\n", + "VR=100-50\t\t#in Volts\n", + "VR=50\t\t\t#in Volts\n", + "\n", + "if V< VZ:\n", + " \n", + " print\"Zener diode is OFF state\" \n", + "else:\n", + " print \"zener diode is ON state\"\n", + "\n", + "print\"Hence the voltage dropp across the 5 Kohm resistor in Volts is \",VR,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.21 Page No. 176" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resistance Ri is 25.0 ohm\n" + ] + } + ], + "source": [ + "#Exa 4.21\n", + "#Find the input resistance\n", + "\n", + "#given data\n", + "RL=120.0\t\t\t#in ohm, load resistance\n", + "Izmin=20\t\t#in mA min. diode current\n", + "Izmax=200\t\t#in mA max. diode current\n", + "VL=12\t\t\t#in Volts\n", + "VDCmin=15\t\t#in Volts\n", + "VDCmax=19.5\t\t#in Volts\n", + "Vz=12\t\t\t#in Volts\n", + "IL=VL/RL\t\t#in Ampere\n", + "IL=IL*1000\t\t#in mAmpere\n", + "\n", + "#calculation\n", + "#For VDCmin = 15 volts\n", + "VSmin=VDCmin-Vz\t\t#in Volts\n", + "#For VDCmax = 19.5 volts\n", + "VSmax=VDCmax-Vz\t\t#in Volts\n", + "ISmin=Izmin+IL\t\t#in mA\n", + "Ri=VSmin/ISmin\t\t#in Kohm\n", + "Ri=Ri*10**3\t\t#in ohm\n", + "\n", + "#result\n", + "print\"The resistance Ri is \",Ri,\"ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4.22 Page No. 177" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Range of RL in Kohm : From 250.0 ohm to 1.25 kohm\n", + "Range of IL in mA : From 8.0 mA to 40.0 mA\n" + ] + } + ], + "source": [ + "#Exa4.22\n", + "#Determine the range of Rl and Il\n", + "\n", + "#given data\n", + "VRL=10\t\t\t#in Volts Diode resistance\n", + "Vi=50\t\t\t#in Volts\n", + "R=1.0\t\t\t#in Kohm Resistance\n", + "Vz=10\t\t\t#in Volts\n", + "VL=Vz\t\t\t#in Volts\n", + "Izm=32\t\t\t#in mA\n", + "IR=(Vi-VL)/R\t\t#in mA\n", + "\n", + "Izmin=0\t\t\t #in mA\n", + "ILmax=IR-Izmin\t\t#in mA\n", + "RLmin=VL/ILmax\t\t#in Ohm\n", + "Izmax=32\t\t #in mA\n", + "ILmin=IR-Izmax\t\t#in mA\n", + "VL=Vz\t\t\t #in Volts\n", + "RLmax=VL/ILmin\t\t#in Ohm\n", + "\n", + "#Result\n", + "print\"Range of RL in Kohm : From \",RLmin*1000,\"ohm to \",RLmax,\"kohm\"\n", + "print\"Range of IL in mA : From \",ILmin,\"mA to \",ILmax,\"mA\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |