summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics_
diff options
context:
space:
mode:
authordebashisdeb2014-06-20 15:42:42 +0530
committerdebashisdeb2014-06-20 15:42:42 +0530
commit83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch)
treef54eab21dd3d725d64a495fcd47c00d37abed004 /Fluid_Mechanics_
parenta78126bbe4443e9526a64df9d8245c4af8843044 (diff)
downloadPython-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip
removing problem statements
Diffstat (limited to 'Fluid_Mechanics_')
-rw-r--r--Fluid_Mechanics_/Chapter1.ipynb49
-rw-r--r--Fluid_Mechanics_/Chapter10.ipynb24
-rw-r--r--Fluid_Mechanics_/Chapter11.ipynb16
-rw-r--r--Fluid_Mechanics_/Chapter12.ipynb18
-rw-r--r--Fluid_Mechanics_/Chapter2.ipynb56
-rw-r--r--Fluid_Mechanics_/Chapter3.ipynb33
-rw-r--r--Fluid_Mechanics_/Chapter4.ipynb28
-rw-r--r--Fluid_Mechanics_/Chapter5.ipynb31
-rw-r--r--Fluid_Mechanics_/Chapter6.ipynb8
-rw-r--r--Fluid_Mechanics_/Chapter7.ipynb25
-rw-r--r--Fluid_Mechanics_/Chapter8.ipynb33
-rw-r--r--Fluid_Mechanics_/Chapter9.ipynb50
12 files changed, 0 insertions, 371 deletions
diff --git a/Fluid_Mechanics_/Chapter1.ipynb b/Fluid_Mechanics_/Chapter1.ipynb
index e770487c..2869f384 100644
--- a/Fluid_Mechanics_/Chapter1.ipynb
+++ b/Fluid_Mechanics_/Chapter1.ipynb
@@ -28,9 +28,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Density of air\n",
"\n",
- "#Given \n",
"\n",
"Mw = 29.0 # Molecular weight of air\n",
"\n",
@@ -40,7 +38,6 @@
"\n",
"p = 50*144*47.88 # Pressure in N/m**2\n",
"\n",
- "# Solution\n",
"\n",
"rho = p/(R*T) # from the state law\n",
"\n",
@@ -71,9 +68,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Reduction in volume\n",
"\n",
- "# Given\n",
"\n",
"dP = 10**6 # Pressure drop in N/m**2\n",
"\n",
@@ -81,7 +76,6 @@
"\n",
"bta = 2.2*10**9 # Bulk modulus of elasticity in N/m**2\n",
"\n",
- "# Solution\n",
"\n",
"dV = -dP*V/bta # Change in volume in m**3\n",
"\n",
@@ -114,9 +108,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Volume reduction\n",
"\n",
- "# Given\n",
"\n",
"bta1 = 2.28*10**9 # Bulk modulus of elasticity at 20 deg C and 103.4 N/m**2\n",
"\n",
@@ -126,7 +118,6 @@
"\n",
"p2 = 1034 # Pressure in N/m**2\n",
"\n",
- "# Solution \n",
"\n",
"bavg = (bta1+bta2)/2 # bulk modulus average in N/m**2\n",
"\n",
@@ -168,9 +159,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Volume reduction \n",
"\n",
- "# Given\n",
"\n",
"patm = 14.6 # Atmospheric pressure in psia\n",
"\n",
@@ -179,7 +168,6 @@
"p2 = 102 # gauge pressure at point 2 in psia\n",
"\n",
"V = 1 # volume in m**3\n",
- "# solution\n",
"\n",
"p = p1+patm # absolute pressure in psia\n",
"\n",
@@ -224,11 +212,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Sonic velocity of air\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"k = 1.4 # gas constant\n",
"\n",
@@ -236,7 +222,6 @@
"\n",
"T = 68+460 # temperature in *oR\n",
"\n",
- "# solution\n",
"\n",
"c = sqrt(k*R*T)\n",
"\n",
@@ -267,11 +252,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force required to move the piston\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"d = 0.05 # diameter of cylinder 1 in m\n",
"\n",
@@ -287,7 +270,6 @@
"\n",
"A = pi*l*d # area in m**2\n",
"\n",
- "# Solution \n",
"\n",
"tau = mu*U/Y # Shear stress in N/m**2\n",
"\n",
@@ -320,27 +302,19 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Distance between the walls; Shear Stress; Location of maximum velocity\n",
"\n",
"from math import *\n",
"\n",
"from sympy import *\n",
"\n",
- "# Given\n",
"\n",
"mu = 1.005*10**-3 # Viscosity of water in Ns/m**2\n",
"\n",
- "# Solution \n",
"\n",
- "# Part a\n",
"\n",
- "# Velocity is given by the formula u = 10*(0.01*y-y**2)\n",
"\n",
- "# two boundary conditions must be satisfied\n",
"\n",
- "# at y=0;u=0 at the bottom of the plate\n",
"\n",
- "# at y=Y ; u = 0 at top of the plate\n",
"\n",
"Y = 0.01 # Distance between the walls\n",
"\n",
@@ -348,11 +322,8 @@
"\n",
"print \" (a) Distance between the walls = \",round(Y1,1),\"cm\"\n",
"\n",
- "# Part b\n",
"\n",
- "# tau = mu*du/dy # Newtons law of viscosity\n",
"\n",
- "# differentiate u wrt y\n",
"\n",
"y = Symbol('y')\n",
"\n",
@@ -364,8 +335,6 @@
"\n",
"U = uprime\n",
"\n",
- "#print U\n",
- "# for y =0 at the bottom plate we get \n",
"\n",
"U1 = 0.01 # from U\n",
"\n",
@@ -373,19 +342,14 @@
"\n",
"print \" (b) Shear stress = \",round(tau,9),\"N/m**2\"\n",
"\n",
- "# Part c\n",
"\n",
- "# Shaer stress at 20um from the wall\n",
"\n",
"tau1 = mu*10*(0.01-2*20*10**-6) # using the equation of U and y = 20*10**-6 calc shear stress in N/m**2\n",
"\n",
"print \" (c) Shear Stress at 20 um from the plate = \",round(tau1,9),\"N/m**2\"\n",
"\n",
- "# Part D\n",
"\n",
- "# Distance at which shaer stress is zero can be found from the location of maximum velocity \n",
"\n",
- "# equating uprime = 0\n",
"\n",
"y1 = 0.01/2 # shear stress location\n",
"\n",
@@ -423,9 +387,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Shaft torque for linear and non linear distribution of velocity \n",
"from math import *\n",
- "# Given\n",
"\n",
"d = 0.1 # diameter of shaft in m\n",
"\n",
@@ -443,9 +405,7 @@
"\n",
"mu = 0.44 # Viscosity of SAE-30 oil in Ns/m**2\n",
"\n",
- "# Solution\n",
"\n",
- "# part a\n",
"\n",
"F = 2*pi*r1*l*mu*U/t\n",
"\n",
@@ -453,7 +413,6 @@
"\n",
"print \" (a) For linear distribution of velocity , shaft torque = \",round(T,2),\"m.N\"\n",
"\n",
- "# part b\n",
"\n",
"F1 = 2*pi*l*mu*U/log(r2/r1)\n",
"\n",
@@ -488,9 +447,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Watts of energy lost to overcome friction\n",
"from math import *\n",
- "# Given\n",
"\n",
"mu = 0.44 # viscosity of the oil in Ns/m**2\n",
"\n",
@@ -533,15 +490,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Excessive pressure inside droplet\n",
"\n",
- "# Given\n",
"\n",
"d = 0.01 # diameter in m\n",
"\n",
"sigma = 0.073 # surface tension in N/m\n",
"\n",
- "# Solution \n",
"\n",
"dP = 4*sigma/d # pressure excessive\n",
"\n",
@@ -572,9 +526,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Height to which alcohol will rise\n",
"\n",
- "# Given\n",
"\n",
"sigma = 0.022 # surface tension in N/m\n",
"\n",
@@ -584,7 +536,6 @@
"\n",
"d = 0.002 # diameter in m\n",
"\n",
- "# Solution \n",
"\n",
"\n",
"h =4*sigma*1000/(gma*S*d) # capillary height in m\n",
diff --git a/Fluid_Mechanics_/Chapter10.ipynb b/Fluid_Mechanics_/Chapter10.ipynb
index fc9fd648..679a7dd2 100644
--- a/Fluid_Mechanics_/Chapter10.ipynb
+++ b/Fluid_Mechanics_/Chapter10.ipynb
@@ -29,13 +29,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Top width, area of lfow, hydraulic radius\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"b = 3 # base of the channel\n",
"\n",
@@ -43,7 +41,6 @@
"\n",
"y = 2 # depth of the channel\n",
"\n",
- "# Solution\n",
"\n",
"T = b + 2*z*y\n",
"\n",
@@ -99,13 +96,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Discharge for the trapezoidal channel\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"z = 1.0 # slide slope\n",
"\n",
@@ -117,7 +112,6 @@
"\n",
"n = 0.012 # for concrete\n",
"\n",
- "# Solution\n",
"\n",
"A = (b+z*y)*y\n",
"\n",
@@ -125,7 +119,6 @@
"\n",
"R = A/P\n",
"\n",
- "# from mannings eqquation\n",
"\n",
"Q = A*(1/n)*(R**(2/3)*S**(1/2))\n",
"\n",
@@ -156,19 +149,16 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine cross sectional area\n",
"\n",
"from __future__ import division\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"z = 1\n",
"\n",
"Q = 10000/60 # discharge of water in ft**#/s\n",
"\n",
- "# Solution\n",
"\n",
"y = (Q/(1.828*2.25*sqrt(0.5)))**(2/5)\n",
"\n",
@@ -204,13 +194,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Calculate criticcal depth\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"y = 2.5 # depth\n",
"\n",
@@ -218,7 +206,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"Yc = (20**2/g)**(1/3)\n",
"\n",
@@ -249,13 +236,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# determine normal depth, flow regine, critical depth\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"Q = 15 # flow rate in m**3/s\n",
"\n",
@@ -267,9 +252,7 @@
"\n",
"z = 0.5 # slope\n",
"\n",
- "# Solution\n",
"\n",
- "# We use a trial and error method here to find the value of y i.e. normal depth\n",
"\n",
"y = 2.22 # we take the value of y as 2.2 m\n",
"\n",
@@ -289,7 +272,6 @@
"\n",
"print \"b )F = \",round(F,2),\" Since the Froude number is less than 1, the flow is subcritical\"\n",
"\n",
- "# we use trail and error to find the value of yc for critical depth\n",
"\n",
"yc = 1.08\n",
"\n",
@@ -325,13 +307,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Height, type and length of jump and loss of energy\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"b = 60 # base width in ft\n",
"\n",
@@ -341,7 +321,6 @@
"\n",
"g = 32.2\n",
"\n",
- "# Solution\n",
"\n",
"V1 = Q/(b*y1)\n",
"\n",
@@ -394,13 +373,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine flow rate\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 6 # depth of the channel\n",
"\n",
@@ -412,7 +389,6 @@
"\n",
"g = 32.2\n",
"\n",
- "# Solution\n",
"\n",
"y2 = y1 - h - 0.75\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter11.ipynb b/Fluid_Mechanics_/Chapter11.ipynb
index 93e3588f..618f66c5 100644
--- a/Fluid_Mechanics_/Chapter11.ipynb
+++ b/Fluid_Mechanics_/Chapter11.ipynb
@@ -28,13 +28,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 11.1\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"T1 = 273 + 15 # temperature in K\n",
"\n",
@@ -42,7 +40,6 @@
"\n",
"Cp = 0.24 # cp for air in kcal/kgK\n",
"\n",
- "# Solution\n",
"\n",
"dh = Cp*(T2-T1) # enthalpy per kg of air\n",
"\n",
@@ -75,13 +72,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 11.2\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"T1 = 273 + 15 # temperature in K\n",
"\n",
@@ -95,7 +90,6 @@
"\n",
"k = 1.4 # gas constant\n",
"\n",
- "# solution\n",
"\n",
"dS = Cv*log((T2/T1)**k*(P2/P1)**(1-k))\n",
"\n",
@@ -128,7 +122,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 11.3\n",
"\n",
"from math import *\n",
"\n",
@@ -183,15 +176,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 11.4\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
- "# for water\n",
"\n",
"S =1 # specific gravity\n",
"\n",
@@ -199,7 +189,6 @@
"\n",
"bta = 2.2*10**9 # Bulk modulus of elasticity\n",
"\n",
- "# ethly alcohol\n",
"\n",
"S1 =0.79 # specific gravity\n",
"\n",
@@ -207,7 +196,6 @@
"\n",
"bta2 = 1.21*10**9 # Bulk modulus of elasticity\n",
"\n",
- "# for air\n",
"\n",
"k = 1.4 # gas constant for air\n",
"\n",
@@ -215,7 +203,6 @@
"\n",
"T = 273+20 # temperature in K\n",
"\n",
- "# Solution\n",
"\n",
"C1 = sqrt(bta/rho)\n",
"\n",
@@ -257,13 +244,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 11.5\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"P1 = 1.5 # pressure in psia\n",
"\n",
@@ -275,7 +260,6 @@
"\n",
"V1 = 1500 # velocity in ft/s\n",
"\n",
- "# Solution\n",
"\n",
"c1 = sqrt(k*R*T1)\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter12.ipynb b/Fluid_Mechanics_/Chapter12.ipynb
index 06c84068..29dbb6ff 100644
--- a/Fluid_Mechanics_/Chapter12.ipynb
+++ b/Fluid_Mechanics_/Chapter12.ipynb
@@ -28,13 +28,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 12.1\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"Q = 0.25 # discharge from the pump in m**3/s\n",
"\n",
@@ -48,7 +46,6 @@
"\n",
"w = 2*pi*N/60 # angular velocity\n",
"\n",
- "# Solution\n",
"\n",
"Eff = gma*Q*H*100/(T*w) # efficiency\n",
"\n",
@@ -79,13 +76,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 12.2\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 0.4 # diameter of the pump in m\n",
"\n",
@@ -99,7 +94,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"w = 2*pi*N/60 # anggular velocity in rad/s\n",
"\n",
@@ -168,21 +162,17 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 12.3\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 0.36 # diameter of the impeller of pump\n",
"\n",
"N = 1500 # Speed of impeller in RPM\n",
"\n",
- "# Solution\n",
"\n",
- "# For best efficiency\n",
"\n",
"Q1 = 82 # discharge in l/s\n",
"\n",
@@ -194,7 +184,6 @@
"\n",
"H2 = 20 # head in m\n",
"\n",
- "# Solving the simulataneous equation we get\n",
"\n",
"D2 = 38.45\n",
"\n",
@@ -230,13 +219,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 12.4\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"q = 500 # discharge in cgm\n",
"\n",
@@ -252,9 +239,7 @@
"\n",
"N = 1800 # speed in RPM\n",
"\n",
- "# Solution\n",
"\n",
- "# for water at 65 deg C\n",
"\n",
"nu = 1.134*10**-5 # viscosity in ft**2/s\n",
"\n",
@@ -304,13 +289,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Example 12.5 \n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"H = 60 # height in m\n",
"\n",
@@ -324,7 +307,6 @@
"\n",
"w = 9810 # specific weight\n",
"\n",
- "# Solution\n",
"\n",
"Npsh_m = sigma*60 # minimum NPSH\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter2.ipynb b/Fluid_Mechanics_/Chapter2.ipynb
index 24cd4f37..ffb67770 100644
--- a/Fluid_Mechanics_/Chapter2.ipynb
+++ b/Fluid_Mechanics_/Chapter2.ipynb
@@ -28,11 +28,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force applied on the piston\n",
"\n",
"from math import *\n",
"\n",
- "# Given \n",
"\n",
"d = 10 # diameter of hydraulic press in meters\n",
"\n",
@@ -44,7 +42,6 @@
"\n",
"Ar = math.pi*d**2/4 # Area of rram in m**2\n",
"\n",
- "# Solution \n",
"\n",
"p = W/Ar # pressure to be supplied by the oil in N/cm**2\n",
"\n",
@@ -78,15 +75,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Pressure in kN/m**2\n",
"\n",
- "# Given\n",
"\n",
"h = 1 # ocean depth below the surface in km\n",
"\n",
"gma = 10070 # Specific weight of sea water\n",
"\n",
- "# Solution\n",
"\n",
"P =gma*h # Pressure in kN/m**2\n",
"\n",
@@ -117,9 +111,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Pressure at the bottom of the tank\n",
"\n",
- "# Given\n",
"\n",
"p1 = 150*10**3 # Pressure at point 1 in kN/m**2\n",
"\n",
@@ -131,7 +123,6 @@
"\n",
"h1 = 2.0 # height of oil 3 in tank\n",
"\n",
- "# Solution \n",
"\n",
"p2 = (p1 + Sg*h*g)\n",
"\n",
@@ -164,9 +155,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Height of the mountain\n",
"\n",
- "# Given\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
@@ -185,7 +174,6 @@
"\n",
"r = p/Po\n",
"\n",
- "# Solution\n",
"\n",
"y = -(R*T/(g*0.19))*(1 - (r)**((n-1)/n))\n",
"\n",
@@ -216,9 +204,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Pressure in the pipe\n",
"\n",
- "# Given\n",
"\n",
"h1 = 500 # height in mm\n",
"\n",
@@ -230,7 +216,6 @@
"\n",
"w = 9810 # specific weight of water\n",
"\n",
- "# Solution\n",
"\n",
"ha = ((h2*S2)-(h1*S1))/1000\n",
"\n",
@@ -264,9 +249,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force required to open the gate\n",
"\n",
- "# Given\n",
"\n",
"from __future__ import division\n",
"\n",
@@ -284,21 +267,16 @@
"\n",
"y1= 5+0.5\n",
"\n",
- "# Solution\n",
"\n",
"F = w*round(A,3)*(y1) # the answer will come out to be different as they have used the value of Area as 0.78 \n",
"\n",
- "# depth of the COP\n",
"\n",
"h1 = y1 + (Ig*math.sin(theta)*math.sin(theta)/(A*y1))\n",
"\n",
- "# moment about hinge A\n",
"\n",
"F1 = (F*(h1 - 5))/d\n",
"\n",
"print \"Magnitude of the force required to open the gate = \",round(F1,0),\"N\" \n",
- "#The area calculated in the book is 0.785 and that calculated from code is 0.78. \n",
- "#This difference of 0.005 is causing the answer to change from the original\n"
],
"language": "python",
"metadata": {},
@@ -325,11 +303,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# total force ; position of the center of pressure \n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"l =2 # length of the plate in m\n",
"\n",
@@ -341,7 +317,6 @@
"\n",
"w = 9810 # specific weight of water\n",
"\n",
- "# Solution\n",
"\n",
"A = 1*2\n",
"\n",
@@ -383,11 +358,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Hydrostatic force and point of location \n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"d = 6 # diameter of the gate in ft\n",
"\n",
@@ -401,7 +374,6 @@
"\n",
"F1 = p1*A\n",
"\n",
- "# Solution\n",
"\n",
"Tf = F+F1\n",
"\n",
@@ -415,7 +387,6 @@
"\n",
"print \"point of location on the center plate = \",round(H,2),\"ft\"\n",
"\n",
- "# method 2\n",
"\n",
"Hf = p1/62.4 # equivalent fluid height\n",
"\n",
@@ -456,11 +427,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Horizontal and Vertical components\n",
"\n",
"import math\n",
"\n",
- "# Given\n",
"\n",
"R = 4 # radius of the gate in ft\n",
"\n",
@@ -474,7 +443,6 @@
"\n",
"xv2 = 1.7 # distance in ft\n",
"\n",
- "# Solution \n",
"\n",
"Fh = R*y1*gma\n",
"\n",
@@ -523,13 +491,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Vertical and Horizontal components\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"p = 50 # pressure in psia\n",
"\n",
@@ -549,7 +515,6 @@
"\n",
"xv2 = 1.7 # center of pressure2 for x direction force\n",
"\n",
- "# Solution\n",
"\n",
"Fh = gma*A*y1 # hiorizontal force\n",
"\n",
@@ -600,13 +565,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Depth to which water would rise\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"l = 3 # length in m\n",
"\n",
@@ -628,7 +591,6 @@
"\n",
"gma = 9810 # specific density \n",
"\n",
- "# Solution\n",
"\n",
"Fb = Tw # since barge is floating\n",
"\n",
@@ -664,7 +626,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Level at which cylinder will float\n",
"\n",
"from math import *\n",
"\n",
@@ -672,11 +633,9 @@
"\n",
"import numpy as np\n",
"\n",
- "# Given\n",
"\n",
"W = 0.4 * 9.81 # weight of the solid cylinder in N\n",
"\n",
- "# Solution\n",
"\n",
"A = np.array([(1,-0.96),(1,1)])\n",
"\n",
@@ -723,11 +682,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Weight of the pan and the magnitude of righting moment\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"l =100 # length of the pan in cm\n",
"\n",
@@ -739,7 +696,6 @@
"\n",
"gma = 9810 # sepcific weight\n",
"\n",
- "# Solution\n",
"\n",
"Fb = gma*(d*w*l/(2*l**3)) # weight on the pan\n",
"\n",
@@ -753,7 +709,6 @@
"\n",
"x = ((X2-X1)*cos(theta*pi/180))\n",
"\n",
- "# momentum equation \n",
"\n",
"M = W*x\n",
"\n",
@@ -786,15 +741,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Metacentric height and rightning moment \n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Continued from example 2.15\n",
"\n",
- "# Given\n",
"\n",
"Io = 15*4**3/12 # moment of inertia in m**4\n",
"\n",
@@ -803,7 +755,6 @@
"Gb = ((3/2)-(2.71/2)) \n",
"\n",
"W = 1739.2 # weight of the barge from the previous example in kN\n",
- "# Solution\n",
"\n",
"Mg = (Io/V)-Gb # metacentric height in m\n",
"\n",
@@ -840,13 +791,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Maximum pressure in the tank\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"l=6 # length of the tank\n",
"\n",
@@ -864,7 +813,6 @@
"\n",
"po=0 # pressure at the origin\n",
"\n",
- "# Solution\n",
"\n",
"A = np.array([(1,-1),(1,1)])\n",
"\n",
@@ -876,7 +824,6 @@
"\n",
"Y2 = x[1]\n",
"\n",
- "# AMximum pressure at the bottom of the tank\n",
"\n",
"P = po - W*(2.61*X/9.81) - W*(1+(1.5/9.81))*(-Y2)\n",
"\n",
@@ -907,13 +854,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Height of the paraboloid revolution; maxm=imum pressure and location ; pressure at the point 0.2 from the center\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 1 # diamter of the jar in ft\n",
"\n",
@@ -925,7 +870,6 @@
"\n",
"g = 32.2 # acceleration due to gravity in ft/s**2\n",
"\n",
- "# Solution\n",
"\n",
"w = 2*pi*N/60\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter3.ipynb b/Fluid_Mechanics_/Chapter3.ipynb
index e702596e..845caa9a 100644
--- a/Fluid_Mechanics_/Chapter3.ipynb
+++ b/Fluid_Mechanics_/Chapter3.ipynb
@@ -28,19 +28,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Dimension of flow field ; velocity components at (1,2) ; magnitude and direction of velocity \n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
- "# V = 4*Xi-4Yj\n",
"\n",
"x=1 # x co-ordinate\n",
"\n",
"y=2 # y co-ordinate\n",
"\n",
- "# Solution\n",
"\n",
"print \"(a) u = 4*X; v = -4*Y \"\n",
"\n",
@@ -83,13 +79,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Discharge and mass flow rate\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 0.3 # diameter of pipe in m\n",
"\n",
@@ -99,7 +93,6 @@
"\n",
"A = pi*d**2/4\n",
"\n",
- "# Solution\n",
"\n",
"Q=A*v\n",
"\n",
@@ -135,7 +128,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Mean Velocity\n",
"\n",
"from math import *\n",
"\n",
@@ -143,7 +135,6 @@
"\n",
"from scipy import integrate\n",
"\n",
- "# Given\n",
"\n",
"Vo = 10 # velocity in m/s\n",
"\n",
@@ -153,7 +144,6 @@
"\n",
"N = 1\n",
"\n",
- "# Solution\n",
"\n",
"R = lambda r: (10*r-1000*r**3)\n",
"\n",
@@ -192,7 +182,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Sketch the stream lines in the first quadrant\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
@@ -204,22 +193,17 @@
"\n",
"from sympy import *\n",
"\n",
- "#init_printing(use_unicode=False, warp_line=False, no_global=True)\n",
"\n",
- "# Given\n",
"\n",
- "# V = 4*y(m)i+2(m)j\n",
"\n",
"x = Symbol('x')\n",
"U = integrate(2,x)\n",
"\n",
- "#print u\n",
"\n",
"y = Symbol('y')\n",
"\n",
"V = integrate(-4*y,y)\n",
"\n",
- "#print V\n",
"\n",
"Zhi = U + V\n",
"\n",
@@ -276,7 +260,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# magnitude and direction of flow field\n",
"\n",
"from math import *\n",
"\n",
@@ -284,13 +267,11 @@
"\n",
"import numpy as np\n",
"\n",
- "# Given\n",
"\n",
"x = 2 # X co-ordinate\n",
"\n",
"Y = 4 # Y co-ordiante\n",
"\n",
- "# Solution\n",
"y = Symbol('y')\n",
"\n",
"zhi = 4*x*y\n",
@@ -348,7 +329,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine velocity ; convective accleration\n",
"\n",
"from math import *\n",
"\n",
@@ -360,7 +340,6 @@
"\n",
"from scipy import integrate\n",
"\n",
- "# Given\n",
"\n",
"d1 = 0.09 # diameter in cm\n",
"\n",
@@ -370,7 +349,6 @@
"\n",
"mdot = 25 # mass flow rate in kg/s\n",
"\n",
- "# Solution\n",
"\n",
"x = Symbol('x')\n",
"\n",
@@ -392,7 +370,6 @@
"\n",
"V1 = vprime\n",
"\n",
- "# at x = 0.1 m we get dv/dx = 0..09\n",
"\n",
"VPrime = 0.09\n",
"\n",
@@ -426,15 +403,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Is the flow irrotational\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
- "# w = (16y-12x)i +(12y-9x)j\n",
"\n",
- "# Solution\n",
"\n",
"y = Symbol('y')\n",
"\n",
@@ -453,10 +426,7 @@
"\n",
"v = zhiprime1\n",
"\n",
- "#Vx = -9 # differentiate V wrt x\n",
"\n",
- "#Vx = -9 # differentiate V wrt x\n",
- "#Uy = 16 # differentiate U wrt y\n",
"\n",
"z = v-u\n",
"\n",
@@ -490,11 +460,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Velocity in larger section\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"d1 = 0.1 # diameter in m\n",
"\n",
@@ -502,7 +470,6 @@
"\n",
"V1 = 30 # velocity in m/s\n",
"\n",
- "# Solution\n",
"\n",
"V2 = (d1**2/d2**2)*V1\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter4.ipynb b/Fluid_Mechanics_/Chapter4.ipynb
index 20d6f3d5..ea310eb2 100644
--- a/Fluid_Mechanics_/Chapter4.ipynb
+++ b/Fluid_Mechanics_/Chapter4.ipynb
@@ -28,13 +28,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Difference in pressure at top and bottom\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d1 = 0.1 # diameter in m\n",
"\n",
@@ -52,7 +50,6 @@
"\n",
"g = 9.81\n",
"\n",
- "# Solution\n",
"\n",
"V1 = Q/A1 # velocity at section 1\n",
"\n",
@@ -87,13 +84,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Actual discharge\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 2.5 # diameter in cm\n",
"\n",
@@ -105,7 +100,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2 \n",
"\n",
- "# Solution\n",
"\n",
"Q = Cd*A*sqrt(2*g*h)/100\n",
"\n",
@@ -137,7 +131,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Discharge through the orifice\n",
"\n",
"from __future__ import division\n",
"\n",
@@ -147,7 +140,6 @@
"\n",
"import numpy as np\n",
"\n",
- "# Given\n",
"\n",
"H1 = 3 # height in m\n",
"\n",
@@ -159,7 +151,6 @@
"\n",
"g = 9.81 # acceleration due to grvity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"q = lambda h: h**(1/2)\n",
" \n",
@@ -194,7 +185,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# discharge through orifice\n",
" \n",
"from math import *\n",
"\n",
@@ -204,7 +194,6 @@
"\n",
"import numpy as np\n",
"\n",
- "# Given\n",
"\n",
"b = 1 # bredth of the tank\n",
"\n",
@@ -222,7 +211,6 @@
"\n",
"A = 1*0.3 # area of submerged section in m**2\n",
"\n",
- "# Solution\n",
"\n",
"q = lambda h: h**(1/2)\n",
" \n",
@@ -261,13 +249,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine flow rate of water\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d1 = 2 # radius of pipe\n",
"\n",
@@ -283,7 +269,6 @@
"\n",
"Cd = 0.95\n",
"\n",
- "# Solution\n",
"\n",
"V2 = sqrt(21582/0.9375)\n",
"\n",
@@ -318,13 +303,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Velocity of stream point at the point of insertion\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"dx = 0.5 # in ft\n",
"\n",
@@ -332,7 +315,6 @@
"\n",
"g = 32.2 # acceleration due to gravity in ft/s**2\n",
"\n",
- "# solution\n",
"\n",
"V = sqrt(2*g*dx)\n",
"\n",
@@ -363,7 +345,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Discharge throught the system\n",
"\n",
"from math import *\n",
"\n",
@@ -379,7 +360,6 @@
"\n",
"d = 15 # diameter of the nozzle in cm\n",
"\n",
- "# Solution\n",
"\n",
"V2 = sqrt(2*g*z1/4.25)\n",
"\n",
@@ -414,14 +394,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Power input to the pump\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
"\n",
- "# Given\n",
"\n",
"Eff = 0.8 # pump efficiency\n",
"\n",
@@ -443,7 +421,6 @@
"\n",
"z1 = 30 # height in m\n",
"\n",
- "# Solution\n",
"\n",
"V1=(2/6)**2*V2\n",
"\n",
@@ -482,11 +459,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Pressure head at A and B\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"Q = 0.2 # discharge in m**3/s\n",
"\n",
@@ -504,13 +479,11 @@
"\n",
"g =9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"V=Q/A # Velocity of in m/s\n",
"\n",
"Hl1 = (0.02*100*V**2/(0.25*2*9.81))\n",
"\n",
- "# pressure head at A\n",
"\n",
"Pa =(z1-za-(V**2/(2*g))-Hl1)\n",
"\n",
@@ -518,7 +491,6 @@
"\n",
"print \"Elevation at height A =\",round(El,2),\"m\"\n",
"\n",
- "# pressure head at B\n",
"\n",
"hs = z3 - z1 + (0.02*(500/0.25)*(V**2/(2*g))) \n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter5.ipynb b/Fluid_Mechanics_/Chapter5.ipynb
index 92a56ea7..73c391ca 100644
--- a/Fluid_Mechanics_/Chapter5.ipynb
+++ b/Fluid_Mechanics_/Chapter5.ipynb
@@ -28,11 +28,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Resultant force on the elbow\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"Q = 0.3 # Water flow rate in m**3/s\n",
"\n",
@@ -60,13 +58,10 @@
"\n",
"theta = 45*pi/180 # angle in deg\n",
"\n",
- "# Soultion\n",
"\n",
- "# Applying the X momentum equation we get\n",
"\n",
"Rx = F1 - F2*cos(theta)-rho*Q*(V2*cos(theta)-V1)\n",
"\n",
- "# Applying the Y momentum equation\n",
"\n",
"Ry = F2*sin(theta)+rho*Q*(V2*sin(theta)-0)\n",
"\n",
@@ -104,11 +99,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force exerted by the jet on the vane\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"V1 = 80 # Velocity in ft/s\n",
"\n",
@@ -120,21 +113,16 @@
"\n",
"a = pi/3 # angle of pipe bend\n",
"\n",
- "# Solution\n",
"\n",
"Q = A1*V1 # Total discharge in m**3\n",
"\n",
- "# Applying bernoullis at point 1 and 2\n",
"\n",
"V2 = sqrt((2*g*V1**2/(2*32.2))-3*2*g)\n",
"\n",
- "# Pressure at the end of the section are atmospheric and hence 0\n",
"\n",
- "# momentum equation in X direction\n",
"\n",
"Rx = -(rho*Q*(V2*cos(a)-80))\n",
"\n",
- "# momentum equation in Y direction\n",
"\n",
"Ry = (rho*Q*(V2*sin(a)-0))\n",
"\n",
@@ -172,9 +160,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force needed to hold the Y position \n",
"\n",
- "# Given\n",
"\n",
"from __future__ import division\n",
"\n",
@@ -206,7 +192,6 @@
"\n",
"rho = 1000 # density in kg/m**3\n",
"\n",
- "# Solution\n",
"\n",
"V1 = Q1/A1\n",
"\n",
@@ -262,9 +247,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Normal force on the plate\n",
"\n",
- "# Given\n",
"from math import *\n",
"\n",
"d = 2 # diameter in inches\n",
@@ -279,7 +262,6 @@
"\n",
"g = 32.2 # acceleration due to gravity in ft/s**2\n",
"\n",
- "# Solution\n",
"\n",
"Rx = (gma*Q*V)/g # horizontal force required to keep plate in position\n",
"\n",
@@ -310,9 +292,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force on the plate ; work doen per second; efficiency\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
@@ -326,7 +306,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s^2\n",
"\n",
- "# Solution\n",
"\n",
"Q =A*V # Discharge in m**3/s\n",
"\n",
@@ -373,9 +352,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Force exerted on the plate\n",
"\n",
- "# Given\n",
"from math import *\n",
"\n",
"d = 3 # diameter in inches\n",
@@ -386,7 +363,6 @@
"\n",
"rho = 1.94 # density in lbs/ft**3\n",
"\n",
- "# Solution\n",
"\n",
"V = Q/A # velocity in ft/s\n",
"\n",
@@ -428,9 +404,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Angle of blade tips at inlet and exit ; work done on the vane; efficiency of the vane\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
@@ -444,7 +418,6 @@
"\n",
"g = 9.81\n",
"\n",
- "# Solution\n",
"\n",
"V1x = V1*cos(alpha)\n",
"\n",
@@ -460,7 +433,6 @@
"\n",
"Vr2 = Vr1\n",
"\n",
- "# from trial and error we get the blade tip angle at inlet and outlet\n",
"\n",
"print \"a ) Angle of blade top at inlet and Outlet, Phi = 4 deg\"\n",
"\n",
@@ -505,9 +477,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Thrust on the plane; propeller efficiency ; theoretical horsepower ; pressure difference acros the blades\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
@@ -519,7 +489,6 @@
"\n",
"mf = 0.0022 # mass flow rate in slugs/ft**3\n",
"\n",
- "# Solution\n",
"\n",
"V1 = v*5280/3600 # velocity in ft/s\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter6.ipynb b/Fluid_Mechanics_/Chapter6.ipynb
index c0425cb0..0eb8031a 100644
--- a/Fluid_Mechanics_/Chapter6.ipynb
+++ b/Fluid_Mechanics_/Chapter6.ipynb
@@ -28,13 +28,10 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Velocity of the flow\n",
"\n",
- "# Given\n",
"\n",
"L = 10 # length scale lp/l\n",
"\n",
- "# crue oil at 20 deg C\n",
"\n",
"rhop = 0.86*998.2 # density inn kg/m**3\n",
"\n",
@@ -42,13 +39,11 @@
"\n",
"Vp = 2.5 # Velocity in m/s\n",
"\n",
- "# water at 20 deg C\n",
"\n",
"rhom = 998.2 # density in kg/m**3\n",
"\n",
"mum = 1.005*10**-3 # viscosity in Ns/m**2\n",
"\n",
- "# Solution\n",
"\n",
"Vm = Vp*L*(rhop/rhom)*(mum/mup) # velocity in m/s\n",
"\n",
@@ -79,9 +74,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Mximum head on the crest and corresponding discharge for dynamically similar conditions\n",
"\n",
- "# Given\n",
"\n",
"from __future__ import division\n",
"\n",
@@ -95,7 +88,6 @@
"\n",
"L = (1/50) # length scale\n",
"\n",
- "# Solution\n",
"\n",
"Qm = 100000*(L)**(5/2) # model discharge in cfs\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter7.ipynb b/Fluid_Mechanics_/Chapter7.ipynb
index e5a10ae6..baafd643 100644
--- a/Fluid_Mechanics_/Chapter7.ipynb
+++ b/Fluid_Mechanics_/Chapter7.ipynb
@@ -28,13 +28,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Is the flow laminar or turbulent\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"nu1 = 0.804*10**-6 # viscosity in m**2/s\n",
"\n",
@@ -42,11 +40,9 @@
"\n",
"D = 0.02 # diameter in m/s\n",
"\n",
- "# for water \n",
"\n",
"rho = 995.7 # density in kg/m**3\n",
"\n",
- "# for gylcerine\n",
"\n",
"mu = 8620*10**-4 # viscosity in Ns/m**2\n",
"\n",
@@ -54,7 +50,6 @@
"\n",
"nu2 = mu/(S*rho) # viscosity of glycerine in Ns/m**2\n",
"\n",
- "# Solution\n",
"\n",
"R1 = V*D/nu1\n",
"\n",
@@ -101,7 +96,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Eddy Viscosity; mixing length ; turbulence constant\n",
"\n",
"from math import *\n",
"\n",
@@ -123,9 +117,7 @@
"\n",
"rho = 1000 # density in kg/m**3\n",
"\n",
- "#y = 0.3\n",
"\n",
- "# solution\n",
"\n",
"Up = diff(8.5+0.7*log(y),y)\n",
"\n",
@@ -174,7 +166,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# PLot boundary layer distribution and total drag on the plate\n",
"\n",
"from math import *\n",
"\n",
@@ -190,9 +181,7 @@
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
- "# Given\n",
"\n",
- "# for glycerine\n",
"\n",
"S = 1.26 # specific gravity \n",
"\n",
@@ -204,9 +193,7 @@
"\n",
"V=1 # velocity in m/s\n",
"\n",
- "# Solution\n",
"\n",
- "# from blasius equation\n",
"\n",
"x = [0,0.1,0.5,1.0,2.0];\n",
"\n",
@@ -214,17 +201,12 @@
"\n",
"tauo = K2*rho*V**2/(sqrt(1462)*np.sqrt(x))\n",
"\n",
- "#plt.figure()\n",
"plt.plot(x, d, 'r')\n",
"plt.xlabel('x(m)')\n",
"plt.ylabel('delta(cm),tauo(N/m**2)')\n",
- "#plt.title('delta v/s x')\n",
- "#plt.legend('d')\n",
"\n",
"plt.plot(x, tauo, 'b')\n",
"plt.xlabel('x')\n",
- "#plt.ylabel('tauo(N/m**2)')\n",
- "#plt.title('tauo v/s x(m)')\n",
"plt.legend('d''t')\n",
"plt.show()\n"
],
@@ -245,7 +227,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Sketch the boundary layer and drag on the plate\n",
"\n",
"import numpy as np\n",
"\n",
@@ -257,7 +238,6 @@
"\n",
"from numpy import sqrt\n",
"\n",
- "# Given\n",
"\n",
"rho = 1.197 # air density in kg/m**3\n",
"\n",
@@ -275,7 +255,6 @@
"\n",
"l3 = 0.951 # length from 0 to 0.951\n",
"\n",
- "# Solution\n",
"\n",
"X = Rec/525576\n",
"\n",
@@ -332,7 +311,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine drag on the sphere\n",
"\n",
"from math import *\n",
"\n",
@@ -340,7 +318,6 @@
"\n",
"from __future__ import division\n",
"\n",
- "# Given\n",
"\n",
"d = 0.01 # doameter of sphere in m\n",
"\n",
@@ -352,11 +329,9 @@
"\n",
"rho = S*1000 # density\n",
"\n",
- "# Solution\n",
"\n",
"R = rho*v*d/mu\n",
"\n",
- "# for the above rho\n",
"\n",
"Cd = 35\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter8.ipynb b/Fluid_Mechanics_/Chapter8.ipynb
index 51f3481e..6972a7f7 100644
--- a/Fluid_Mechanics_/Chapter8.ipynb
+++ b/Fluid_Mechanics_/Chapter8.ipynb
@@ -28,9 +28,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine maximum velocity and shear stress\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
@@ -46,7 +44,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# properties of kerosene\n",
"\n",
"mu = 19.1*10**-4 # viscosity of kerosene at 20 deg C\n",
"\n",
@@ -54,17 +51,13 @@
"\n",
"rho = 1000 # density in kg/m**3\n",
"\n",
- "# Solution\n",
"\n",
- "# calculating direction of flow\n",
"\n",
"p1 = (P1+g*z*S)*1000 # point 1\n",
"\n",
"p2 = (P2)*1000 # point 2\n",
"\n",
- "# direction of flow is from point 1-2\n",
"\n",
- "# shear stress\n",
"\n",
"Sp = -((p1-p2)/sqrt(L**2+z**2))\n",
"\n",
@@ -74,19 +67,16 @@
"\n",
"print \"(a) Maximum shear stress =\",round(Tau_max,3),\"N/m**2\"\n",
"\n",
- "# maximum velocity\n",
"\n",
"Vmax = r**2*Sp/(4*mu)\n",
"\n",
"print \"(b) Maximum velocity =\",round(Vmax,3),\"m/s\"\n",
"\n",
- "# discharge\n",
"\n",
"Q = pi*r**4*Sp/(8*mu)\n",
"\n",
"print \"(c) Discharge = \",round(Q,7),\"m**3/s\"\n",
"\n",
- "# calculate reynolds number\n",
"\n",
"V = Vmax/2\n",
"\n",
@@ -122,9 +112,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine the head loss\n",
"\n",
- "# Given\n",
"\n",
"d = 0.02 # diameter of the pipe in m\n",
"\n",
@@ -134,11 +122,9 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# for water at 5 deg C\n",
"\n",
"nu = 1.54*10**-6 # kinematic viscosity of water in m**2/s\n",
"\n",
- "# Solution\n",
"\n",
"R = v*d/nu\n",
"\n",
@@ -178,13 +164,10 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Horsepower required to pump 50 tons of oil\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
- "# oil properties\n",
"\n",
"S = 0.92 # specific gravity\n",
"\n",
@@ -198,7 +181,6 @@
"\n",
"g = 32.2 # acceleration due to gravity in ft/s**2\n",
"\n",
- "# Solution\n",
"\n",
"Q = W*2000/(gma*3600) # discharge in ft**3/s\n",
"\n",
@@ -244,9 +226,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Viscosity of the liquid in poise\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
@@ -268,9 +248,7 @@
"\n",
"a = pi*d1**2/4\n",
"\n",
- "# Solution\n",
"\n",
- "# From derivation we obtain a equation for T\n",
"\n",
"H2 = H1-(V/A)\n",
"\n",
@@ -303,13 +281,10 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Velocity distribution; Discharge ; shear on the upper plate\n",
"\n",
- "# Given\n",
"\n",
"from math import *\n",
"\n",
- "# properties of kerosene oil at 20 deg C\n",
"\n",
"S = 0.81 # specific gravity of oil\n",
"\n",
@@ -327,35 +302,27 @@
"\n",
"theta = pi/6 # angle of inclination\n",
"\n",
- "# Solution\n",
"\n",
- "# point 1\n",
"\n",
"P1 = p1*144 + gma*l*sin(theta)\n",
"\n",
- "# point 2\n",
"\n",
"P2 = p2*144\n",
"\n",
- "# flow is taking from poont 2-1\n",
"\n",
"Sp = (P2-P1)/4\n",
"\n",
- "# equation for u = 2154.75*y-359125*y**2\n",
"\n",
"y = h\n",
"\n",
- "# discharge per ft width\n",
"\n",
"q = (2154.75*y**2/2) - (359125*y**3/3)\n",
"\n",
"print \"Discharge q = \",round(q,3),\"per unit ft of the plate\"\n",
"\n",
- "# to find shear at the top of the plate take du/dy = 0\n",
"\n",
"dV = 2154.75 - 718250*h\n",
"\n",
- "# shear stress\n",
"\n",
"T = -mu*dV\n",
"\n",
diff --git a/Fluid_Mechanics_/Chapter9.ipynb b/Fluid_Mechanics_/Chapter9.ipynb
index 6c911620..503ee70d 100644
--- a/Fluid_Mechanics_/Chapter9.ipynb
+++ b/Fluid_Mechanics_/Chapter9.ipynb
@@ -28,23 +28,19 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine Head loss\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"S = 1.26 # specific gravity\n",
"\n",
"mu = 0.826 # kinematic viscosity in Ns/m**2\n",
"\n",
- "# for water\n",
"\n",
"rho = 998 # density of water in kg/m**3\n",
"\n",
"mu1 = 1.005*10**-3 # viscosity in Ns/m**2\n",
"\n",
- "# for glycerine\n",
"\n",
"rho1 = S*rho # density of glycerine in kg/m**3\n",
"\n",
@@ -58,7 +54,6 @@
"\n",
"l =100 # length of the pipe\n",
"\n",
- "# Solution\n",
"\n",
"V = Q/A\n",
"\n",
@@ -114,13 +109,10 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Discharge of water\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
- "# for water\n",
"\n",
"nu = 1.007*10**-6 # viscosity in m**2/s\n",
"\n",
@@ -136,7 +128,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"A = sqrt(2*g*D*hf/L)\n",
"\n",
@@ -183,11 +174,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Size of the case iron\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"Q =0.1 # discharge in m**3/s\n",
"\n",
@@ -201,13 +190,11 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"A = 8*L*Q**2/(hf*g*pi**2)\n",
"\n",
"B = 4*Q/(pi*nu)\n",
"\n",
- "# for D = 0.172 ; f=0.01\n",
"D = 0.172\n",
"\n",
"r = e/D\n",
@@ -216,7 +203,6 @@
"\n",
"f = 0.022 # for Re and r\n",
"\n",
- "# for D1=0.199 ; f=0.021\n",
"\n",
"D1 = 0.199\n",
"\n",
@@ -253,11 +239,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Head loss \n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"L = 500 # length of the pipe in ft\n",
"\n",
@@ -267,7 +251,6 @@
"\n",
"S = 0.004\n",
"\n",
- "# Solution\n",
"\n",
"Hf = S*L\n",
"\n",
@@ -298,11 +281,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Head loss of water\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"Q = 0.1 # water flow rate in m**3/s\n",
"\n",
@@ -314,7 +295,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# Solution\n",
"\n",
"r = log(d/e,10)\n",
"\n",
@@ -351,11 +331,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Head loss by conveyance method\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"Q = 0.1 # water flow rate in m**3/s\n",
"\n",
@@ -369,7 +347,6 @@
"\n",
"S = 5.43 \n",
"\n",
- "# Solution\n",
"\n",
"r = log(d/e,10)\n",
"\n",
@@ -404,24 +381,18 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Solve using the conveyence method\n",
"\n",
"from math import *\n",
"\n",
- "# given\n",
"\n",
"eps = 0.025*10**-2 # for cast iron epsilon = 0.0025 cm\n",
"\n",
- "# we get the value of K = 0.432 m**2/s\n",
- "# we need to do trial and error to find the value of D\n",
"\n",
- "# we use the value of D = 0.2 m\n",
"\n",
"D = 0.2 # value in m\n",
"\n",
"g = 9.81\n",
"\n",
- "# Solution\n",
"\n",
"K = (pi/4)*sqrt(2*g)*(2*log10(D/(eps))+1.14)*D**(2.5)\n",
"\n",
@@ -452,11 +423,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determine head loss\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"d = 0.1 # diameter of the pipe\n",
"\n",
@@ -468,7 +437,6 @@
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
- "# for water\n",
"\n",
"nu = 1.007*10**-6 # viscosity in m**2/s\n",
"\n",
@@ -476,7 +444,6 @@
"\n",
"r = e/(10*d)\n",
"\n",
- "# Solution\n",
"\n",
"V = Q/A\n",
"\n",
@@ -523,13 +490,10 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# discharge through the pipe\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
- "# for water\n",
"\n",
"nu = 1.007*10**-6 # viscosity in m**2/s\n",
"\n",
@@ -547,7 +511,6 @@
"\n",
"f2 = 0.022 # foe e/d2\n",
"\n",
- "# Solution\n",
"\n",
"V3 = sqrt(2*g*100/((8.4*(f1)+268.85*(f2)+4.85)))\n",
"\n",
@@ -555,7 +518,6 @@
"\n",
"V2 = (d3/d2)**2*V3\n",
"\n",
- "# reynolds number for pipe BC\n",
"\n",
"R1 = V1*d1/nu\n",
"\n",
@@ -590,11 +552,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Replace the flow system\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"D = 0.2 # diameter of pipe 1\n",
"\n",
@@ -608,7 +568,6 @@
"\n",
"r = e/(100*D) \n",
"\n",
- "# Solution\n",
"\n",
"V = Q/(pi*(0.2)**2/4)\n",
"\n",
@@ -653,11 +612,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Discharge through each branch\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"e = 0.025 # in cm\n",
"\n",
@@ -671,7 +628,6 @@
"\n",
"g = 9.81\n",
"\n",
- "# Pipe 1\n",
"\n",
"r1 = e/D # r1 for pipe 1\n",
"\n",
@@ -683,7 +639,6 @@
"\n",
"hf1 = f*L1*V1**2/(2*g*D1)\n",
"\n",
- "# pipe 2\n",
"\n",
"hf2 = hf1\n",
"\n",
@@ -701,7 +656,6 @@
"\n",
"Q2 = V2*(pi*D2**2/4)\n",
"\n",
- "#pipe 3\n",
"\n",
"hf3=hf1\n",
"\n",
@@ -733,7 +687,6 @@
"\n",
"print \"Discharge through branch 3 =\",round(q3,3),\"m**3/s\"\n",
"\n",
- "# Actual head loss\n",
"\n",
"d = 0.5\n",
"\n",
@@ -777,11 +730,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Find minimum depth below the ridge\n",
"\n",
"from math import *\n",
"\n",
- "# Given\n",
"\n",
"e = 0.00015 # from moody's chart\n",
"\n",
@@ -801,7 +752,6 @@
"\n",
"L = 1000 # length in ft\n",
"\n",
- "# Solution\n",
"\n",
"f = 0.011 # assume\n",
"\n",