summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics_/Chapter10.ipynb
blob: fc9fd648043971ae0276cb1a49d57778fe2e6c91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
{
 "metadata": {
  "name": "",
  "signature": "sha256:3b6a6304ae5564c5b042191e18c023d5d141ad8d64a979c29e54da09ebc8a32e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter 10 : Open Channel Flow\n",
      "    "
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.1 Page no 363"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Top width, area of lfow, hydraulic radius\n",
      "\n",
      "from math import *\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "# Given\n",
      "\n",
      "b = 3                            # base of the channel\n",
      "\n",
      "z = 0.5                          # slope of the channel\n",
      "\n",
      "y = 2                            # depth of the channel\n",
      "\n",
      "# Solution\n",
      "\n",
      "T = b + 2*z*y\n",
      "\n",
      "print \"Top width =\",round(T,0),\"m\"\n",
      "\n",
      "A = (b+z*y)*y\n",
      "\n",
      "print \"Area of flow =\",round(A,0),\"m**2\"\n",
      "\n",
      "P = b + 2*y*sqrt(1+z**2)\n",
      "\n",
      "print \"Wetted perimeter =\",round(P,3),\"m\"\n",
      "\n",
      "R = A/P\n",
      "\n",
      "print \"Hydraulic radius =\",round(R,2),\"m\"\n",
      "\n",
      "D = A/T\n",
      "\n",
      "print \"Hydraulic depth =\",round(D,2),\"m\"\n",
      "\n",
      "Z = A*sqrt(D)\n",
      "\n",
      "print \"Secton Factor =\",round(Z,2),\"m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Top width = 5.0 m\n",
        "Area of flow = 8.0 m**2\n",
        "Wetted perimeter = 7.472 m\n",
        "Hydraulic radius = 1.07 m\n",
        "Hydraulic depth = 1.6 m\n",
        "Secton Factor = 10.12 m**2\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.2 Page no 366"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Discharge for the trapezoidal channel\n",
      "\n",
      "from math import *\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "# Given\n",
      "\n",
      "z = 1.0                # slide slope\n",
      "\n",
      "b = 3.0                # base width\n",
      "\n",
      "y = 1.5                # depth\n",
      "\n",
      "S = 0.0009\n",
      "\n",
      "n = 0.012             # for concrete\n",
      "\n",
      "# Solution\n",
      "\n",
      "A = (b+z*y)*y\n",
      "\n",
      "P = P = b + 2*y*sqrt(1+z**2)\n",
      "\n",
      "R = A/P\n",
      "\n",
      "# from mannings eqquation\n",
      "\n",
      "Q = A*(1/n)*(R**(2/3)*S**(1/2))\n",
      "\n",
      "print \"Discharge for the channel =\",round(Q,2),\"m**3/s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Discharge for the channel = 16.1 m**3/s\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.4 Page no 373"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Determine cross sectional area\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "from math import *\n",
      "\n",
      "# Given\n",
      "\n",
      "z = 1\n",
      "\n",
      "Q = 10000/60                     # discharge of water in ft**#/s\n",
      "\n",
      "# Solution\n",
      "\n",
      "y = (Q/(1.828*2.25*sqrt(0.5)))**(2/5)\n",
      "\n",
      "print \"depth(y) =\",round(y,2),\"ft\"\n",
      "\n",
      "b = 0.828*y\n",
      "\n",
      "print \"base width(b) =\",round(b,2),\"ft\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "depth(y) = 5.05 ft\n",
        "base width(b) = 4.18 ft\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.5 Page no 378"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Calculate criticcal depth\n",
      "\n",
      "from math import *\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "# Given\n",
      "\n",
      "y = 2.5                 # depth\n",
      "\n",
      "V = 8                  # velocity in m/s\n",
      "\n",
      "g = 9.81               # acceleration due to gravity in m/s**2\n",
      "\n",
      "# Solution\n",
      "\n",
      "Yc = (20**2/g)**(1/3)\n",
      "\n",
      "print \"Critical depth =\",round(Yc,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Critical depth = 3.44 m\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.6 Page no 380"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# determine normal depth, flow regine, critical depth\n",
      "\n",
      "from math import *\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "# Given\n",
      "\n",
      "Q = 15 # flow rate in m**3/s\n",
      "\n",
      "w = 4.0  # bottom width\n",
      "\n",
      "S = 0.0008 # bed slope\n",
      "\n",
      "n = 0.025 # manning constant\n",
      "\n",
      "z = 0.5 # slope\n",
      "\n",
      "# Solution\n",
      "\n",
      "# We use a trial and error method here to find the value of y i.e. normal depth\n",
      "\n",
      "y = 2.22 # we take the value of y as 2.2 m\n",
      "\n",
      "Q = ((4+0.5*y)*(y/(n))*(((4+0.5*y)*y)/(4+2.236*y))**(0.667)*(S)**(0.5))\n",
      "\n",
      "print \"a )Normal Depth =\",round(y,2),\"m\"\n",
      "\n",
      "A = (4+0.5*y)*y\n",
      "\n",
      "T = (w+2*z*y)\n",
      "\n",
      "D = A/T\n",
      "\n",
      "V = (Q/A)\n",
      "\n",
      "F =V/(sqrt(9.81*D)) \n",
      "\n",
      "print \"b )F = \",round(F,2),\" Since the Froude number is less than 1, the flow is subcritical\"\n",
      "\n",
      "# we use trail and error to find the value of yc for critical depth\n",
      "\n",
      "yc = 1.08\n",
      "\n",
      "Q1 = (4+z*yc)*yc*sqrt((9.81*(4+0.5*yc)*yc)/(4+2*z*yc)) \n",
      "\n",
      "print \"c )Critical depth is = \",round(yc,2),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a )Normal Depth = 2.22 m\n",
        "b )F =  0.31  Since the Froude number is less than 1, the flow is subcritical\n",
        "c )Critical depth is =  1.08 m\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "\n",
      "Example 10.8 Page no 390"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Height, type and length of jump and loss of energy\n",
      "\n",
      "from math import *\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "# Given\n",
      "\n",
      "b = 60                   # base width in ft\n",
      "\n",
      "y1 = 2.5                 # base depth in ft\n",
      "\n",
      "Q = 2500                 # discharge in ft**3/s\n",
      "\n",
      "g = 32.2\n",
      "\n",
      "# Solution\n",
      "\n",
      "V1 = Q/(b*y1)\n",
      "\n",
      "F1 = V1/sqrt(g*y1)\n",
      "\n",
      "y2 = y1*0.5*(sqrt(1+8*F1**2)-1)\n",
      "\n",
      "V2 = Q/(b*y2)\n",
      "\n",
      "print \"Since F1 =\",round(F1,2),\" It is a weak jump\"\n",
      "\n",
      "L = y2*4.25\n",
      "\n",
      "print \"Length of the jump =\",round(L,0),\"ft\"\n",
      "\n",
      "E1 = y1+(V1**2/(2*g))\n",
      "\n",
      "E2 = y2+(V2**2/(2*g))\n",
      "\n",
      "El = E1-E2\n",
      "\n",
      "Te = El*62.4*Q/543\n",
      "\n",
      "print \"Total energy loss =\",round(Te,2),\"HP\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Since F1 = 1.86  It is a weak jump\n",
        "Length of the jump = 23.0 ft\n",
        "Total energy loss = 133.7 HP\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 10.12 Page no 409"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Determine flow rate\n",
      "\n",
      "from math import *\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "# Given\n",
      "\n",
      "d = 6                      # depth of the channel\n",
      "\n",
      "w= 12                      # width of the channel\n",
      "\n",
      "h  = 1.0                   # height of the channel\n",
      "\n",
      "p = 9                      # pressure drop in m\n",
      "\n",
      "g = 32.2\n",
      "\n",
      "# Solution\n",
      "\n",
      "y2 = y1 - h - 0.75\n",
      "\n",
      "V1 = sqrt(2*g*0.75/((1.41)**2-1))\n",
      "\n",
      "Q = w*b*V1/10\n",
      "\n",
      "print \"Discharge =\",round(Q,0),\"cfs\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Discharge = 503.0 cfs\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}