summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commit6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch)
tree22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Engineering_Physics_by_A._Marikani/Chapter_8.ipynb
parentd36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff)
downloadPython-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_A._Marikani/Chapter_8.ipynb')
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_8.ipynb525
1 files changed, 525 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb
new file mode 100755
index 00000000..1db414de
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb
@@ -0,0 +1,525 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1a361e48153d58a5820c879429a5bbafe3e6e3df7d99a198492b082874550ac1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Conducting materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.1, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "n=2.533*10**28; #concentration of electrons per m^3\n",
+ "e=1.6*10**-19;\n",
+ "tow_r=3.1*10**-14; #relaxation time in sec\n",
+ "\n",
+ "#Calculation\n",
+ "rho=m/(n*(e**2*tow_r));\n",
+ "\n",
+ "#Result\n",
+ "print(\"electrical resistivity in ohm metre is\",rho);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.2, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "s=3.75*10**3; #slope\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=2*k*s;\n",
+ "Eg=Eg/(1.6*10**-19); #converting J to eV\n",
+ "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"band gap of semiconductor in eV is\",Eg);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('band gap of semiconductor in eV is', 0.647)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.3, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=989; #temperature in C\n",
+ "k=1.38*10**-23;\n",
+ "#let E-EF be E\n",
+ "E=0.5; #occupied level of electron in eV\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "E=E*1.6*10**-19; #converting eV to J\n",
+ "#let fermi=dirac distribution function f(E) be f\n",
+ "f=1/(1+math.exp(E/(k*T)));\n",
+ "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"probability of occupation of electrons is\",f);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('probability of occupation of electrons is', 0.011)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.4, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_e=0.0035; #mobility of electrons in m^2/Vs\n",
+ "E=0.5; #electric field strength in V/m\n",
+ "\n",
+ "#Calculation\n",
+ "vd=mew_e*E;\n",
+ "vd=vd*10**3;\n",
+ "\n",
+ "#Result\n",
+ "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.5, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=6.022*10**23; #avagadro number\n",
+ "e=1.6*10**-19;\n",
+ "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n",
+ "w=63.5; #atomic weight \n",
+ "d=8.92*10**3; #density in kg/m^3\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**3;\n",
+ "sigma=1/rho;\n",
+ "sigmaa=sigma/10**7;\n",
+ "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n",
+ "n=(d*A)/w;\n",
+ "mew=sigma/(n*e); #mobility of electrons\n",
+ "mew=mew*10**3;\n",
+ "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n",
+ "print(\"concentration of carriers per m^3\",n);\n",
+ "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n",
+ "('concentration of carriers per m^3', 8.459250393700786e+28)\n",
+ "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.6, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=18.1*10**28; #concentration of electrons per m^3\n",
+ "h=6.62*10**-34; #planck constant in Js\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "\n",
+ "#Calculation\n",
+ "X=h**2/(8*me);\n",
+ "E_F0=X*(((3*n)/math.pi)**(2/3));\n",
+ "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n",
+ "\n",
+ "#Result\n",
+ "print(\"Fermi energy in eV is\",E_F0);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('Fermi energy in eV is', 3.762396978021977e-19)\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.7, Page number 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "E_F0=5.5; #fermi energy in eV\n",
+ "h=6.63*10**-34; #planck constant in Js\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "\n",
+ "#Calculation\n",
+ "E_F0=E_F0*1.6*10**-19; #converting eV to J\n",
+ "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n",
+ "\n",
+ "#Result\n",
+ "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n",
+ "\n",
+ "#answer given in the book is wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.8, Page number 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.07; #energy gap of silicon in eV\n",
+ "k=1.38*10**-23;\n",
+ "T=298; #temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=Eg*1.6*10**-19; #converting eV to J\n",
+ "#let the probability of electron f(E) be X\n",
+ "#X=1/(1+exp((E-Ef)/(k*T)))\n",
+ "#but E=Ec and Ec-Ef=Eg/2\n",
+ "X=1/(1+math.exp(Eg/(2*k*T)))\n",
+ "\n",
+ "#Result\n",
+ "print(\"probability of an electron thermally excited is\",X);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('probability of an electron thermally excited is', 9.122602463573379e-10)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.9, Page number 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23;\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "vf=0.86*10**6; #fermi velocity in m/sec\n",
+ "\n",
+ "#Calculation\n",
+ "Efj=(m*vf**2)/2;\n",
+ "Ef=Efj/(1.6*10**-19); #converting J to eV\n",
+ "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n",
+ "Tf=Efj/k;\n",
+ "Tf=Tf/10**4;\n",
+ "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fermi energy of metal in J is\",Efj);\n",
+ "print(\"fermi energy of metal in eV is\",Ef);\n",
+ "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fermi energy of metal in J is', 3.3651800000000002e-19)\n",
+ "('fermi energy of metal in eV is', 2.104)\n",
+ "('fermi temperature in K is', 2.4386, '*10**4')\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.10, Page number 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n",
+ "K=387; #thermal conductivity of Cu in W/mK\n",
+ "T=27; #temperature in C\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "L=K/(sigma*T);\n",
+ "\n",
+ "#Result\n",
+ "print(\"lorentz number in W ohm/K^2 is\",L);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.11, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "e=1.6*10**-19;\n",
+ "k=1.38*10**-23;\n",
+ "n=8.49*10**28; #concentration of electrons in Cu per m^3\n",
+ "tow_r=2.44*10**-14; #relaxation time in sec\n",
+ "T=20; #temperature in C\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "sigma=(n*(e**2)*tow_r)/m;\n",
+ "sigmaa=sigma/10**7;\n",
+ "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n",
+ "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n",
+ "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n",
+ "L=K/(sigma*T);\n",
+ "\n",
+ "#Result\n",
+ "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n",
+ "print(\"thermal conductivity in W/mK is\",K);\n",
+ "print(\"Lorentz number in W ohm/K^2 is\",L);\n",
+ "\n",
+ "#answer for lorentz number given in the book is wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n",
+ "('thermal conductivity in W/mK is', 417.89)\n",
+ "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file