diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch) | |
tree | 22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Engineering_Physics_by_A._Marikani/Chapter_8.ipynb | |
parent | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff) | |
download | Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2 Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip |
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_A._Marikani/Chapter_8.ipynb')
-rwxr-xr-x | Engineering_Physics_by_A._Marikani/Chapter_8.ipynb | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb new file mode 100755 index 00000000..1db414de --- /dev/null +++ b/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb @@ -0,0 +1,525 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1a361e48153d58a5820c879429a5bbafe3e6e3df7d99a198492b082874550ac1" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Conducting materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.1, Page number 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass of the electron in kg\n", + "n=2.533*10**28; #concentration of electrons per m^3\n", + "e=1.6*10**-19;\n", + "tow_r=3.1*10**-14; #relaxation time in sec\n", + "\n", + "#Calculation\n", + "rho=m/(n*(e**2*tow_r));\n", + "\n", + "#Result\n", + "print(\"electrical resistivity in ohm metre is\",rho);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.2, Page number 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "s=3.75*10**3; #slope\n", + "k=1.38*10**-23;\n", + "\n", + "#Calculation\n", + "Eg=2*k*s;\n", + "Eg=Eg/(1.6*10**-19); #converting J to eV\n", + "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", + "\n", + "#Result\n", + "print(\"band gap of semiconductor in eV is\",Eg);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('band gap of semiconductor in eV is', 0.647)\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.3, Page number 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "T=989; #temperature in C\n", + "k=1.38*10**-23;\n", + "#let E-EF be E\n", + "E=0.5; #occupied level of electron in eV\n", + "\n", + "#Calculation\n", + "T=T+273; #temperature in K\n", + "E=E*1.6*10**-19; #converting eV to J\n", + "#let fermi=dirac distribution function f(E) be f\n", + "f=1/(1+math.exp(E/(k*T)));\n", + "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n", + "\n", + "#Result\n", + "print(\"probability of occupation of electrons is\",f);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('probability of occupation of electrons is', 0.011)\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.4, Page number 232" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "mew_e=0.0035; #mobility of electrons in m^2/Vs\n", + "E=0.5; #electric field strength in V/m\n", + "\n", + "#Calculation\n", + "vd=mew_e*E;\n", + "vd=vd*10**3;\n", + "\n", + "#Result\n", + "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n", + "\n", + "#answer given in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.5, Page number 232" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "A=6.022*10**23; #avagadro number\n", + "e=1.6*10**-19;\n", + "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n", + "w=63.5; #atomic weight \n", + "d=8.92*10**3; #density in kg/m^3\n", + "\n", + "#Calculation\n", + "d=d*10**3;\n", + "sigma=1/rho;\n", + "sigmaa=sigma/10**7;\n", + "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n", + "n=(d*A)/w;\n", + "mew=sigma/(n*e); #mobility of electrons\n", + "mew=mew*10**3;\n", + "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n", + "\n", + "#Result\n", + "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n", + "print(\"concentration of carriers per m^3\",n);\n", + "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n", + "('concentration of carriers per m^3', 8.459250393700786e+28)\n", + "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.6, Page number 232" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "n=18.1*10**28; #concentration of electrons per m^3\n", + "h=6.62*10**-34; #planck constant in Js\n", + "me=9.1*10**-31; #mass of electron in kg\n", + "\n", + "#Calculation\n", + "X=h**2/(8*me);\n", + "E_F0=X*(((3*n)/math.pi)**(2/3));\n", + "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n", + "\n", + "#Result\n", + "print(\"Fermi energy in eV is\",E_F0);\n", + "\n", + "#answer given in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('Fermi energy in eV is', 3.762396978021977e-19)\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.7, Page number 233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "E_F0=5.5; #fermi energy in eV\n", + "h=6.63*10**-34; #planck constant in Js\n", + "me=9.1*10**-31; #mass of electron in kg\n", + "\n", + "#Calculation\n", + "E_F0=E_F0*1.6*10**-19; #converting eV to J\n", + "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n", + "\n", + "#Result\n", + "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n", + "\n", + "#answer given in the book is wrong\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.8, Page number 233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "Eg=1.07; #energy gap of silicon in eV\n", + "k=1.38*10**-23;\n", + "T=298; #temperature in K\n", + "\n", + "#Calculation\n", + "Eg=Eg*1.6*10**-19; #converting eV to J\n", + "#let the probability of electron f(E) be X\n", + "#X=1/(1+exp((E-Ef)/(k*T)))\n", + "#but E=Ec and Ec-Ef=Eg/2\n", + "X=1/(1+math.exp(Eg/(2*k*T)))\n", + "\n", + "#Result\n", + "print(\"probability of an electron thermally excited is\",X);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('probability of an electron thermally excited is', 9.122602463573379e-10)\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.9, Page number 234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "k=1.38*10**-23;\n", + "m=9.1*10**-31; #mass of the electron in kg\n", + "vf=0.86*10**6; #fermi velocity in m/sec\n", + "\n", + "#Calculation\n", + "Efj=(m*vf**2)/2;\n", + "Ef=Efj/(1.6*10**-19); #converting J to eV\n", + "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n", + "Tf=Efj/k;\n", + "Tf=Tf/10**4;\n", + "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n", + "\n", + "#Result\n", + "print(\"fermi energy of metal in J is\",Efj);\n", + "print(\"fermi energy of metal in eV is\",Ef);\n", + "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('fermi energy of metal in J is', 3.3651800000000002e-19)\n", + "('fermi energy of metal in eV is', 2.104)\n", + "('fermi temperature in K is', 2.4386, '*10**4')\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.10, Page number 234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n", + "K=387; #thermal conductivity of Cu in W/mK\n", + "T=27; #temperature in C\n", + "\n", + "#Calculation\n", + "T=T+273; #temperature in K\n", + "L=K/(sigma*T);\n", + "\n", + "#Result\n", + "print(\"lorentz number in W ohm/K^2 is\",L);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.11, Page number 235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass of the electron in kg\n", + "e=1.6*10**-19;\n", + "k=1.38*10**-23;\n", + "n=8.49*10**28; #concentration of electrons in Cu per m^3\n", + "tow_r=2.44*10**-14; #relaxation time in sec\n", + "T=20; #temperature in C\n", + "\n", + "#Calculation\n", + "T=T+273; #temperature in K\n", + "sigma=(n*(e**2)*tow_r)/m;\n", + "sigmaa=sigma/10**7;\n", + "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n", + "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n", + "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n", + "L=K/(sigma*T);\n", + "\n", + "#Result\n", + "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n", + "print(\"thermal conductivity in W/mK is\",K);\n", + "print(\"Lorentz number in W ohm/K^2 is\",L);\n", + "\n", + "#answer for lorentz number given in the book is wrong\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n", + "('thermal conductivity in W/mK is', 417.89)\n", + "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |