summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A._Marikani
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commit6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch)
tree22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Engineering_Physics_by_A._Marikani
parentd36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff)
downloadPython-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_A._Marikani')
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_1.ipynb267
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_10.ipynb304
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_11.ipynb320
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_12.ipynb300
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_2.ipynb476
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_3.ipynb331
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_4.ipynb765
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_6.ipynb900
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_7.ipynb187
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_8.ipynb525
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_9.ipynb593
-rwxr-xr-xEngineering_Physics_by_A._Marikani/README.txt10
-rwxr-xr-xEngineering_Physics_by_A._Marikani/screenshots/screenshot1.PNGbin0 -> 33329 bytes
-rwxr-xr-xEngineering_Physics_by_A._Marikani/screenshots/screenshot2.PNGbin0 -> 31796 bytes
-rwxr-xr-xEngineering_Physics_by_A._Marikani/screenshots/screenshot3.PNGbin0 -> 19782 bytes
15 files changed, 4978 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_1.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_1.ipynb
new file mode 100755
index 00000000..a6934dcd
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_1.ipynb
@@ -0,0 +1,267 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:dbcb8c7a4d852e94c64ae36b37434de99bb1000ca8d8a481769813b464811eeb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.1, Page number 28 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=0.15*10**-2; #thickness of the quartz crystal in m\n",
+ "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n",
+ "rho=2650; #density of quartz in kg/m^3\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(Y/rho);\n",
+ "f=x/(2*t);\n",
+ "f=f*10**-6; #converting f from Hz to MHz\n",
+ "f=math.ceil(f*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fundamental frequency of vibration in MHz is\",f);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fundamental frequency of vibration in MHz is', 1.819992)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.2, Page number 28 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=1e-03; #thickness of the quartz crystal in m\n",
+ "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n",
+ "rho=2650; #density of quartz in kg/m^3\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(Y/rho);\n",
+ "p1=1; #for fundamental frequency p=1\n",
+ "f1=(p1*x)/(2*t);\n",
+ "F1=f1/10**6;\n",
+ "F1=math.ceil(F1*10**5)/10**5; #rounding off to 5 decimals\n",
+ "f_1=f1*10**-6; #converting f1 from Hz to MHz\n",
+ "f_1=math.ceil(f_1*10**5)/10**5; #rounding off to 5 decimals\n",
+ "p2=2; #for first overtone p=2\n",
+ "f2=(p2*x)/(2*t);\n",
+ "F2=f2/10**6;\n",
+ "F2=math.ceil(F2*10**5)/10**5; #rounding off to 5 decimals\n",
+ "f_2=f2*10**-6; #converting f2 from Hz to MHz\n",
+ "f_2=math.ceil(f_2*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fundamental frequency in Hz is\",F1,\"*10**6\");\n",
+ "print(\"fundamental frequency in MHz is\",f_1);\n",
+ "print(\"frequency of the first overtone in Hz is\",F2,\"*10**6\");\n",
+ "print(\"frequency of the first overtone in MHz is\",f_2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fundamental frequency in Hz is', 2.72999, '*10**6')\n",
+ "('fundamental frequency in MHz is', 2.72999)\n",
+ "('frequency of the first overtone in Hz is', 5.45998, '*10**6')\n",
+ "('frequency of the first overtone in MHz is', 5.45998)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.3, Page number 29 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=589.3*10**-9; #wavelength of light in m\n",
+ "f=100*10**6; #frequency of ultrasonic transducer in Hz\n",
+ "n=1; #order of diffraction\n",
+ "theta=2.25; #angle of diffraction in degrees\n",
+ "theta=theta*0.0174532925; #converting degrees to radians\n",
+ "\n",
+ "#Calculation\n",
+ "d=(n*lamda)/(2*math.sin(theta));\n",
+ "d1=d*10**6; #converting d from m to micro m\n",
+ "lamda1=2*d;\n",
+ "v=f*lamda1;\n",
+ "v=math.ceil(v*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"wavelength of ultrasonic wave in m is\",lamda1);\n",
+ "print(\"velocity of ultrasonic wave in m/sec\",int(v));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('wavelength of ultrasonic wave in m is', 1.5010258944908707e-05)\n",
+ "('velocity of ultrasonic wave in m/sec', 1501)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.4, Page number 29 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "f=2*10**6; #frequency of transducer in MHz\n",
+ "v=3; #speed of blood in m/s\n",
+ "c=800; #velocity of ultrasonic wave in m/s\n",
+ "theta=30; #angle of inclination in degrees\n",
+ "theta=theta*0.0174532925; #converting degrees to radians\n",
+ "\n",
+ "#Calculation\n",
+ "deltaf=(2*f*v*math.cos(theta))/c;\n",
+ "deltaf=deltaf*10**-6; #converting deltaf from Hz to MHz\n",
+ "deltaf=math.ceil(deltaf*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"doppler shifted frequency in MHz is\",deltaf);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('doppler shifted frequency in MHz is', 0.012991)\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.5, Page number 30 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n",
+ "rho=2650; #density of quartz in kg/m^3\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(Y/rho);\n",
+ "v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"velocity of ultrasonic waves in m/s is\",v);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('velocity of ultrasonic waves in m/s is', 5459.975)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_10.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_10.ipynb
new file mode 100755
index 00000000..cad8c3fc
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_10.ipynb
@@ -0,0 +1,304 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e2ed8f14e9384f32112bf8b476c63d65b4316d749e72b2c8fa7bc92794bf7f8a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Magnetic materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.1, Page number 305"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "H=10**6; #magnetic field strength in A/m\n",
+ "chi=0.5*10**-5; #magnetic susceptibility\n",
+ "\n",
+ "#Calculation\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "M=chi*H;\n",
+ "B=mew0*(M+H);\n",
+ "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"intensity of magnetisation in A/m is\",M);\n",
+ "print(\"flux density in Wb/m^2 is\",B);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('intensity of magnetisation in A/m is', 5.0)\n",
+ "('flux density in Wb/m^2 is', 1.257)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.2, Page number 306"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=6.022*10**23; #avagadro number\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "w=58.7; #atomic weight of Ni\n",
+ "B=0.65; #saturation magnetic induction in Wb/m^2\n",
+ "rho=8906; #density in kg/m^3\n",
+ "\n",
+ "#Calculation\n",
+ "rho=rho*10**3; #converting into gm/m^3\n",
+ "N=(rho*A)/w;\n",
+ "mew_m=B/(N*mew0);\n",
+ "#mew_m/(9.27*10^-24) gives mew_m in mewB\n",
+ "mew_m=mew_m/(9.27*10**-24);\n",
+ "mew_m=math.ceil(mew_m*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"magnetic moment of Ni is\",mew_m,\"mew_b\");\n",
+ "#that is mew_m=0.61 mew_b"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('magnetic moment of Ni is', 0.611, 'mew_b')\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.3, Page number 306"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_0=4*math.pi*10**-7;\n",
+ "H=1800; #magnetic field in A/m\n",
+ "phi=3*10**-5; #magnetic flux in Wb\n",
+ "A=0.2; #area of cross section in cm^2\n",
+ "\n",
+ "#Calculation\n",
+ "A=A*10**-4; #area in m^2\n",
+ "B=phi/A;\n",
+ "mew_r=B/(mew_0*H);\n",
+ "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"permeability of material is\",mew_r);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('permeability of material is', 663.146)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.4, Page number 307"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew=18.4; #magnetic moment in mew_b\n",
+ "a=0.835; #lattice parameter in nm\n",
+ "\n",
+ "#Calculation\n",
+ "mew=mew*9.27*10**-24;\n",
+ "a=a*10**-9; #converting nm to m\n",
+ "V=a**3;\n",
+ "M=mew/V;\n",
+ "M=M/10**5;\n",
+ "M=math.ceil(M*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"saturation magnetisation in A/m is\",M,\"*10**5\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('saturation magnetisation in A/m is', 2.9299, '*10**5')\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.5, Page number 307"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_0=4*math.pi*10**-7;\n",
+ "H=2*10**5; #magnetic field strength in A/m\n",
+ "mew_r=1.01; #relative permeability\n",
+ "\n",
+ "#Calculation\n",
+ "B=mew_0*mew_r*H;\n",
+ "B=math.ceil(B*10**5)/10**5; #rounding off to 3 decimals\n",
+ "M=(B/mew_0)-H;\n",
+ "M=math.ceil(M*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"magnetic flux density in Wb/m^2 is\",B);\n",
+ "print(\"magnetisation in A/m is\",M);\n",
+ "\n",
+ "#answer for magnetisation given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('magnetic flux density in Wb/m^2 is', 0.25385)\n",
+ "('magnetisation in A/m is', 2007.42)\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.6, Page number 307"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_0=4*math.pi*10**-7;\n",
+ "H=500; #magnetic field strength in A/m\n",
+ "chi=1.2; #susceptibility\n",
+ "\n",
+ "#Calculation\n",
+ "M=chi*H;\n",
+ "B=mew_0*(M+H);\n",
+ "B=B*10**3;\n",
+ "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"magnetic flux density in Wb/m^2 is\",B,\"*10**-3\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('magnetic flux density in Wb/m^2 is', 1.3824, '*10**-3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_11.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_11.ipynb
new file mode 100755
index 00000000..781b51dc
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_11.ipynb
@@ -0,0 +1,320 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6c9d1e462fb51d212d5e8b8f597a34ef40452b9332c91d54e15e6a4dccd85074"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Dielectric materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.1, Page number 335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "A=10*10*10**-6; #area of capacitor in m^2\n",
+ "d=2*10**-3; #distance of seperation in m\n",
+ "C=10**-9; #capacitance in F\n",
+ "\n",
+ "#Calculation\n",
+ "epsilon_r=(C*d)/(epsilon_0*A);\n",
+ "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"dielectric constant of material is\",epsilon_r);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('dielectric constant of material is', 2258.87)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.2, Page number 335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "epsilon_r=1.0000684; #dielectric constant of He gas\n",
+ "N=2.7*10**25; #concentration of dipoles per m^3\n",
+ "\n",
+ "#Calculation\n",
+ "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n",
+ "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n",
+ "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n",
+ "\n",
+ "#Result\n",
+ "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.3, Page number 336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "epsilon_r=6; #dielectric constant\n",
+ "E=100; #electric field intensity in V/m\n",
+ "\n",
+ "#Calculation\n",
+ "P=epsilon_0*(epsilon_r-1)*E;\n",
+ "\n",
+ "#Result\n",
+ "print(\"polarization in C/m^2 is\",P);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('polarization in C/m^2 is', 4.426999999999999e-09)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.4, Page number 336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "R=0.158; #radius of Ne in nm\n",
+ "\n",
+ "#Calculation\n",
+ "R=R*10**-9; #converting nm to m\n",
+ "alpha_e=4*math.pi*epsilon_0*R**3;\n",
+ "\n",
+ "#Result\n",
+ "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.5, Page number 336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "C=0.02; #capacitance in micro farad\n",
+ "epsilon_r=6; #dielectric constant\n",
+ "t=0.002; #thickness of mica in cm\n",
+ "d=0.002; #thickness of metal sheet in cm\n",
+ "\n",
+ "#Calculation\n",
+ "C=C*10**-6; #converting micro farad to farad\n",
+ "d=d*10**-2; #converting cm to m\n",
+ "A=(C*d)/(epsilon_0*epsilon_r);\n",
+ "A=A*10**3;\n",
+ "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n",
+ "A1=A*10; #converting m**2 to cm**2\n",
+ "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n",
+ "print(\"area of metal sheet in cm^2 is\",A1);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n",
+ "('area of metal sheet in cm^2 is', 75.296)\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.6, Page number 336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "E=1000; #electric field in V/m\n",
+ "P=4.3*10**-8; #polarization in C/m^2\n",
+ "\n",
+ "#Calculation\n",
+ "epsilon_r=(P/(E*epsilon_0)+1);\n",
+ "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"dielectric constant is\",epsilon_r);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('dielectric constant is', 5.8566)\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.7, Page number 337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.854*10**-12;\n",
+ "chi=4.94; #relative susceptibility\n",
+ "N=10**28; #number of dipoles per m^3\n",
+ "\n",
+ "#Calculation\n",
+ "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n",
+ "#epsilon_0*chi*E=N*alpha*E\n",
+ "alpha=(epsilon_0*chi)/N;\n",
+ "\n",
+ "#Result\n",
+ "print(\"polarisability of material in F/m^2 is\",alpha);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('polarisability of material in F/m^2 is', 4.373876e-39)\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_12.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_12.ipynb
new file mode 100755
index 00000000..dba2b7b8
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_12.ipynb
@@ -0,0 +1,300 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:40ea4bb009666aeba2b07d31c3573a833c155d9ac8e902b20b5967865ae89dbb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Superconducting Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.1, Page number 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=3.7; #critical temperature in K\n",
+ "H0=0.0306; #magnetic field in T\n",
+ "T=2; #temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T**2/Tc**2));\n",
+ "Hc=math.ceil(Hc*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"critical field in T is\",Hc);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('critical field in T is', 0.02166)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.2, Page number 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=7.26; #critical temperature in K\n",
+ "H0=6.4*10**3; #magnetic field in T\n",
+ "T=5; #temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T**2/Tc**2));\n",
+ "Hc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"critical field in T is\",Hc);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('critical field in T is', 3364.385)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.3, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc1=4.185; #critical temperature in K\n",
+ "M1=199.5; #atomic mass\n",
+ "M2=203.4; #atomic mass after changing\n",
+ "\n",
+ "#Calculation\n",
+ "#according to maxwell equation Tc*M^0.5=constant\n",
+ "#Tc1*M1^0.5=Tc2*M2^0.5\n",
+ "Tc2=(Tc1*M1**0.5)/M2**0.5;\n",
+ "Tc2=math.ceil(Tc2*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"critical temperature of Hg in K is\",Tc2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('critical temperature of Hg in K is', 4.144685)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.4, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=1; #diameter of wire in mm\n",
+ "T=4.2; #temperature in K\n",
+ "Tc=7.18; #critical temperature in K\n",
+ "H0=6.5*10**4; #magnetic field\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**-3; #diameter in m\n",
+ "R=d/2;\n",
+ "Hc=H0*(1-(T**2/Tc**2));\n",
+ "HC=Hc/10**4;\n",
+ "HC=math.ceil(HC*10**3)/10**3; #rounding off to 2 decimals\n",
+ "Ic=2*math.pi*R*Hc;\n",
+ "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n",
+ "A=math.pi*R**2;\n",
+ "J=Ic/A;\n",
+ "J=J/10**8;\n",
+ "J=math.ceil(J*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"critical magnetic field at 4.2K in A/m is\",HC,\"*10**4\");\n",
+ "print(\"critical current in A is\",Ic);\n",
+ "print(\"critical current density in A/m^2 is\",J,\"*10**8\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('critical magnetic field at 4.2K in A/m is', 4.276, '*10**4')\n",
+ "('critical current in A is', 134.33)\n",
+ "('critical current density in A/m^2 is', 1.71035, '*10**8')\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.5, Page number 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19;\n",
+ "h=6.626*10**-34;\n",
+ "V=6; #voltage applied in micro volts\n",
+ "\n",
+ "#Calculation\n",
+ "V=V*10**-6; #converting micro volts to volts\n",
+ "new=(2*e*V)/h;\n",
+ "new=new/10**9;\n",
+ "new=math.ceil(new*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"frequency of ac signal in Hz is\",new,\"*10**9\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('frequency of ac signal in Hz is', 2.8977, '*10**9')\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.6, Page number 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Kb=1.38*10**-23;\n",
+ "Tc=7.19; #critical temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=3.5*Kb*Tc;\n",
+ "Eg=Eg/(1.6*10**-19); #converting J to eV\n",
+ "Eg=Eg*10**3; #converting eV into milli eV\n",
+ "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"band gap of superconducting lead in meV is\",Eg);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('band gap of superconducting lead in meV is', 2.171)\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_2.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_2.ipynb
new file mode 100755
index 00000000..b54dc631
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_2.ipynb
@@ -0,0 +1,476 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:86128ebcddc1aace30166722ef06d4489b2c11f53b2c59c5d439d37f83881533"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Laser"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.1, Page number 59 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "lamda=632.8*10**-9; #wavelength in m\n",
+ "P=5*10**-3; #output power in W\n",
+ "\n",
+ "#Calculation\n",
+ "E=(h*c)/lamda; #energy of one photon\n",
+ "E_eV=E/(1.6*10**-19); #converting J to eV\n",
+ "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n",
+ "N=P/E; #number of photons emitted\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy of one photon in eV is\",E_eV);\n",
+ "print(\"number of photons emitted per second is\",N);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy of one photon in eV is', 1.964)\n",
+ "('number of photons emitted per second is', 1.5917094275077976e+16)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.2, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "lamda=632.8*10**-9; #wavelength in m\n",
+ "\n",
+ "#Calculation\n",
+ "E=(h*c)/lamda; #energy of one photon\n",
+ "E_eV=E/(1.6*10**-19); #converting J to eV\n",
+ "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy of one photon in eV is\",E_eV);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy of one photon in eV is', 1.964)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.3, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "E1=0; #value of 1st energy level in eV\n",
+ "E2=1.4; #value of 2nd energy level in eV\n",
+ "lamda=1.15*10**-6;\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "\n",
+ "#Calculation\n",
+ "E=(h*c)/lamda; #energy of one photon\n",
+ "E_eV=E/(1.6*10**-19); #converting J to eV\n",
+ "E3=E2+E_eV;\n",
+ "E3=math.ceil(E3*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"value of E3 in eV is\",E3);\n",
+ "\n",
+ "#answer given in the book for E3 is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('value of E3 in eV is', 2.49)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.4, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "E2=3.2; #value of higher energy level in eV\n",
+ "E1=1.6; #value of lower energy level in eV\n",
+ "\n",
+ "#Calculation\n",
+ "E=E2-E1; #energy difference in eV\n",
+ "E_J=E*1.6*10**-19; #converting E from eV to J\n",
+ "lamda=(h*c)/E_J; #wavelength of photon\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy difference in eV\",E);\n",
+ "print(\"wavelength of photon in m\",lamda);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy difference in eV', 1.6)\n",
+ "('wavelength of photon in m', 7.76484375e-07)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.5, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "E=1.42*1.6*10**-19; #band gap of GaAs in J\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=(h*c)/E; #wavelength of laser\n",
+ "\n",
+ "#Result\n",
+ "print(\"wavelength of laser emitted by GaAs in m\",lamda);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('wavelength of laser emitted by GaAs in m', 8.74911971830986e-07)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.6, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=300; #temperature in K\n",
+ "lamda=500*10**-9; #wavelength in m\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "#from maxwell and boltzmann law, relative population is given by\n",
+ "#N1/N2=exp(-E1/kT)/exp(-E2/kT)\n",
+ "#hence N1/N2=exp(-(E1-E2)/kT)=exp((h*new)/(k*T));\n",
+ "#new=c/lambda\n",
+ "R=(h*c)/(lamda*k*T);\n",
+ "RP=math.exp(R);\n",
+ "\n",
+ "#Result\n",
+ "print(\"relative population between N1 and N2 is\",RP);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('relative population between N1 and N2 is', 5.068255595981255e+41)\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.7, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=300; #temperature in K\n",
+ "h=6.626*10**-34;\n",
+ "c=3*10**8;\n",
+ "k=1.38*10**-23;\n",
+ "lamda=600*10**-9; #wavelength in m\n",
+ "\n",
+ "#Calculation\n",
+ "R=(h*c)/(lamda*k*T);\n",
+ "Rs=1/(math.exp(R)-1);\n",
+ "\n",
+ "#Result\n",
+ "print(\"the ratio between stimulated emission to spontaneous emission is\",Rs);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the ratio between stimulated emission to spontaneous emission is', 1.7617782449453023e-35)\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.8, Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P=5*10**-3; #output power in W\n",
+ "I=10*10**-3; #current in A\n",
+ "V=3*10**3; #voltage in V\n",
+ "\n",
+ "#Calculation\n",
+ "e=(P*100)/(I*V);\n",
+ "e=math.ceil(e*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"efficiency of laser in % is\",e);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('efficiency of laser in % is', 0.016667)\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.9, Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P=1e-03; #output power in W\n",
+ "d=1e-06; #diameter in m\n",
+ "\n",
+ "#Calculation\n",
+ "r=d/2; #radius in m\n",
+ "I=P/(math.pi*r**2); #intensity\n",
+ "I=I/10**9;\n",
+ "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"intensity of laser in W/m^2 is\",I,\"*10**9\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('intensity of laser in W/m^2 is', 1.2733, '*10**9')\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.10, Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=632.8*10**-9; #wavelength in m\n",
+ "D=5; #distance in m\n",
+ "d=1*10**-3; #diameter in m\n",
+ "\n",
+ "#Calculation\n",
+ "deltatheta=lamda/d; #angular speed\n",
+ "delta_theta=deltatheta*10**4;\n",
+ "r=D*deltatheta;\n",
+ "r1=r*10**3; #converting r from m to mm\n",
+ "A=math.pi*r**2; #area of the spread\n",
+ "\n",
+ "#Result \n",
+ "print(\"angular speed in radian is\",delta_theta,\"*10**-4\");\n",
+ "print(\"radius of the spread in mm is\",r1);\n",
+ "print(\"area of the spread in m^2 is\",A);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('angular speed in radian is', 6.328, '*10**-4')\n",
+ "('radius of the spread in mm is', 3.164)\n",
+ "('area of the spread in m^2 is', 3.1450157329451454e-05)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_3.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_3.ipynb
new file mode 100755
index 00000000..7496a57a
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_3.ipynb
@@ -0,0 +1,331 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3f2462cfb429298e26fc6bf563d665947cd211731889b95d7dd1a2db3452c286"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.1, Page number 98 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.6; #refractive index of core\n",
+ "n2=1.5; #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt((n1**2)-(n2**2));\n",
+ "NA=math.ceil(NA*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the numerical aperture of the fibre is\",NA);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the numerical aperture of the fibre is', 0.5568)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.2, Page number 98 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.54; #refractive index of core\n",
+ "n2=1.5; #refractive index of cladding\n",
+ "n0=1;\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture of fibre\n",
+ "NA=math.ceil(NA*10**5)/10**5; #rounding off to 5 decimals\n",
+ "alpha=math.asin(NA/n0); #acceptance angle in radians\n",
+ "alpha=alpha*57.2957795; #converting radians to degrees\n",
+ "alpha=math.ceil(alpha*10**5)/10**5; #rounding off to 5 decimals\n",
+ "deg=int(alpha); #converting to degrees\n",
+ "t=60*(alpha-deg); \n",
+ "mi=int(t); #converting to minutes\n",
+ "sec=60*(t-mi); #converting to seconds\n",
+ "sec=math.ceil(sec*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the numerical aperture of the fibre is\",NA);\n",
+ "print(\"the acceptance angle of the fibre in degrees is\",alpha);\n",
+ "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n",
+ "\n",
+ "#answer for the angle given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the numerical aperture of the fibre is', 0.34872)\n",
+ "('the acceptance angle of the fibre in degrees is', 20.40905)\n",
+ "('acceptance angle of the fibre is', 20, 'degrees', 24, 'minutes', 32.581, 'seconds')\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.3, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.6; #refractive index of core\n",
+ "n2=1.49; #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "thetac=math.asin(n2/n1); #critical angle in radians\n",
+ "thetac=thetac*57.2957795; #converting radians to degrees\n",
+ "theta_c=math.ceil(thetac*10**3)/10**3; #rounding off to 3 decimals\n",
+ "deg=int(thetac); #converting to degrees\n",
+ "t=60*(thetac-deg); \n",
+ "mi=int(t); #converting to minutes\n",
+ "sec=60*(t-mi); #converting to seconds\n",
+ "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical angle of the fibre in degrees is\",theta_c);\n",
+ "print(\"critical angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical angle of the fibre in degrees is', 68.631)\n",
+ "('critical angle of the fibre is', 68, 'degrees', 37, 'minutes', 49.85, 'seconds')\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.4, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.15; #numerical aperture\n",
+ "n2=1.55; #refractive index of cladding\n",
+ "n0=1.33; #refractive index of water\n",
+ "\n",
+ "#Calculation\n",
+ "n1=math.sqrt((NA**2)+(n2**2)); #refractive index\n",
+ "n_1=math.ceil(n1*10**5)/10**5; #rounding off to 5 decimals\n",
+ "alpha=math.asin(math.sqrt(n1**2-n2**2)/n0); #acceptance angle in radians\n",
+ "alpha=alpha*57.2957795; #converting radians to degrees\n",
+ "alphaa=math.ceil(alpha*10**3)/10**3; #rounding off to 3 decimals\n",
+ "deg=int(alpha); #converting to degrees\n",
+ "t=60*(alpha-deg); \n",
+ "mi=int(t); #converting to minutes\n",
+ "sec=60*(t-mi); #converting to seconds\n",
+ "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"refractive index of the core is\",n_1);\n",
+ "print(\"the acceptance angle of the fibre in degrees is\",alphaa);\n",
+ "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n",
+ "\n",
+ "#answer for acceptance angle given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('refractive index of the core is', 1.55725)\n",
+ "('the acceptance angle of the fibre in degrees is', 6.476)\n",
+ "('acceptance angle of the fibre is', 6, 'degrees', 28, 'minutes', 32.55, 'seconds')\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.5, Page number 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.26; #numerical aperture\n",
+ "n1=1.5; #refractive index of core\n",
+ "d=100; #core diameter in micro meter\n",
+ "\n",
+ "#Calculation\n",
+ "d=100*(10**-6); #core diameter in metre\n",
+ "n2=math.sqrt((n1**2)-(NA**2));\n",
+ "n2=math.ceil(n2*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"refractive index of the cladding is\",n2);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('refractive index of the cladding is', 1.4773)\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.6, Page number 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.26; #numerical aperture\n",
+ "delta=0.015; #refractive index difference\n",
+ "\n",
+ "#Calculation\n",
+ "#NA=math.sqrt(n1**2-n2**2)\n",
+ "#let A=n1**2-n2**2\n",
+ "#therefore A=NA**2\n",
+ "A=NA**2;\n",
+ "#delta=(n1**2-n2**2)/2*(n1**2)\n",
+ "#let 2*(n1**2) be B\n",
+ "#therefore B=A/delta\n",
+ "B=A/delta;\n",
+ "n1=math.sqrt(B/2);\n",
+ "n1=math.ceil(n1*100)/100; #rounding off to 2 decimals\n",
+ "n2=math.sqrt(n1**2-NA**2);\n",
+ "n2=math.ceil(n2*10**3)/10**3; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"refractive index of the core is\",n1);\n",
+ "print(\"refractive index of the cladding is\",n2);\n",
+ "\n",
+ "#answer for refractive index of cladding given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('refractive index of the core is', 1.51)\n",
+ "('refractive index of the cladding is', 1.488)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_4.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_4.ipynb
new file mode 100755
index 00000000..d2b8123c
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_4.ipynb
@@ -0,0 +1,765 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e581747b76e15afc0096179446c0fbd68c3566f21f4931be3d8fc722fc1225b8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Quantum Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.1, Page number 133 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.63*10**-34; #plancks constant in Js\n",
+ "m0=9.1*10**-31; #mass of the electron in kg\n",
+ "c=3*10**8; #velocity of light in m/s\n",
+ "phi=135; #angle of scattering in degrees\n",
+ "phi=phi*0.0174532925 #converting degrees to radians \n",
+ "\n",
+ "#Calculation\n",
+ "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n",
+ "\n",
+ "#Result\n",
+ "print(\"change in wavelength in metres is\",delta_lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('change in wavelength in metres is', 4.1458307496867315e-12)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.2, Page number 134 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.63*10**-34; #plancks constant in Js\n",
+ "m0=9.1*10**-31; #mass of the electron in kg\n",
+ "c=3*10**8; #velocity of light in m/s\n",
+ "lamda=2; #wavelength in angstrom\n",
+ "lamdaA=lamda*10**-10; #converting lamda from Angstrom to m\n",
+ "phi=90; #angle of scattering in degrees\n",
+ "phi=phi*0.0174532925 #converting degrees to radians \n",
+ "\n",
+ "#Calculation\n",
+ "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n",
+ "delta_lamda=delta_lamda*10**10; #converting delta_lamda from m to Angstrom\n",
+ "delta_lamda=math.ceil(delta_lamda*10**5)/10**5; #rounding off to 5 decimals\n",
+ "lamda_dash=delta_lamda+lamda;\n",
+ "lamdaA_dash=lamda_dash*10**-10; #converting lamda_dash from Angstrom to m\n",
+ "#energy E=h*new-h*new_dash\n",
+ "E=h*c*((1/lamdaA)-(1/lamdaA_dash));\n",
+ "EeV=E/(1.602176565*10**-19); #converting J to eV\n",
+ "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n",
+ "new=c/lamda;\n",
+ "new_dash=c/lamda_dash;\n",
+ "theta=math.atan((h*new*math.sin(phi))/((h*new)-(h*new_dash*math.cos(phi))));\n",
+ "theta=theta*57.2957795; #converting radians to degrees\n",
+ "\n",
+ "#Result\n",
+ "print(\"change in compton shift in Angstrom is\",delta_lamda);\n",
+ "print(\"wavelength of scattered photons in Angstrom is\",lamda_dash);\n",
+ "print(\"energy of recoiling electron in J is\",E);\n",
+ "print(\"energy of recoiling electron in eV is\",EeV);\n",
+ "print(\"angle at which recoiling electron appears in degrees is\",int(theta));\n",
+ "\n",
+ "#answers given in the book are wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('change in compton shift in Angstrom is', 0.02429)\n",
+ "('wavelength of scattered photons in Angstrom is', 2.02429)\n",
+ "('energy of recoiling electron in J is', 1.1933272900621974e-17)\n",
+ "('energy of recoiling electron in eV is', 74.482)\n",
+ "('angle at which recoiling electron appears in degrees is', 45)\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.3, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m0=9.1*10**-31; #mass of the electron in kg\n",
+ "c=3*10**8; #velocity of light in m/s\n",
+ "phi=60; #angle of scattering in degrees\n",
+ "phi=phi*0.0174532925; #converting degrees to radians\n",
+ "E=10**6; #energy of photon in eV\n",
+ "E=E*1.6*10**-19; #converting eV into J\n",
+ "\n",
+ "#Calculation\n",
+ "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n",
+ "delta_lamda=delta_lamda*10**10; #converting metre to angstrom\n",
+ "delta_lamda=math.ceil(delta_lamda*10**4)/10**4; #rounding off to 4 decimals\n",
+ "lamda=(h*c)/E;\n",
+ "lamdaA=lamda*10**10; #converting metre to angstrom\n",
+ "lamda_dash=delta_lamda+lamdaA;\n",
+ "lamda_dash=math.ceil(lamda_dash*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"compton shift in angstrom is\",delta_lamda);\n",
+ "print(\"energy of incident photon in m\",lamda);\n",
+ "print(\"wavelength of scattered photons in angstrom is\",lamda_dash);\n",
+ "\n",
+ "#answer for wavelength of scattered photon given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('compton shift in angstrom is', 0.0122)\n",
+ "('energy of incident photon in m', 1.242375e-12)\n",
+ "('wavelength of scattered photons in angstrom is', 0.025)\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.4, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "c=3*10**8; #velocity of light in m/s\n",
+ "lamda=5893; #wavelength in angstrom\n",
+ "P=60; #output power in Watt\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=lamda*10**-10; #wavelength in metre\n",
+ "E=(h*c)/lamda;\n",
+ "EeV=E/(1.602176565*10**-19); #converting J to eV\n",
+ "EeV=math.ceil(EeV*10**4)/10**4; #rounding off to 4 decimals\n",
+ "N=P/E;\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy of photon in J is\",E);\n",
+ "print(\"energy of photon in eV is\",EeV);\n",
+ "print(\"number of photons emitted per se cond is\",N);\n",
+ "\n",
+ "#answer for energy in eV given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy of photon in J is', 3.373154590191753e-19)\n",
+ "('energy of photon in eV is', 2.1054)\n",
+ "('number of photons emitted per se cond is', 1.7787503773015396e+20)\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.5, Page number 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "c=3*10**8; #velocity of light in m/s\n",
+ "lamda=10; #wavelength in angstrom\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=lamda*10**-10; #wavelength in metre\n",
+ "E=(h*c)/lamda;\n",
+ "EeV=E/(1.602176565*10**-19); #converting J to eV\n",
+ "EeV=EeV*10**-3; #converting eV to keV\n",
+ "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n",
+ "P=h/lamda;\n",
+ "M=h/(lamda*c);\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy of photon in J is\",E);\n",
+ "print(\"energy of photon in keV is\",EeV);\n",
+ "print(\"momentum in kg m/sec is\",P);\n",
+ "print(\"mass of photon in kg is\",M);\n",
+ "\n",
+ "#answer for energy of photon in keV given in the book is wrong by 1 decimal"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy of photon in J is', 1.9878e-16)\n",
+ "('energy of photon in keV is', 1.241)\n",
+ "('momentum in kg m/sec is', 6.626e-25)\n",
+ "('mass of photon in kg is', 2.2086666666666664e-33)\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.6, Page number 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "e=1.602*10**-19;\n",
+ "V=1.25; #potential difference in kV\n",
+ "\n",
+ "#Calculation\n",
+ "V=V*10**3; #converting kV to V\n",
+ "lamda=h/math.sqrt(2*m*e*V);\n",
+ "lamda=lamda*10**10; #converting metre to angstrom\n",
+ "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"de Broglie wavelength in angstrom is\",lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('de Broglie wavelength in angstrom is', 0.3471)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.7, Page number 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=45; #energy of electron in eV\n",
+ "E=E*1.6*10**-19; #energy in J\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*E);\n",
+ "lamda=lamda*10**10; #converting metres to angstrom\n",
+ "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"de Broglie wavelength in angstrom is\",lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('de Broglie wavelength in angstrom is', 1.8305)\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.8, Page number 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=10**7; #velocity of electron in m/sec\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/(m*v);\n",
+ "lamda=lamda*10**10; #converting metres to angstrom\n",
+ "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"de Broglie wavelength in angstrom is\",lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('de Broglie wavelength in angstrom is', 0.7282)\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.9, Page number 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1000; #potential difference in V\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=1.67*10**-27; #mass of proton in kg\n",
+ "e=1.6*10**-19; #charge of electron in J\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*e*V);\n",
+ "\n",
+ "#Result\n",
+ "print(\"de Broglie wavelength of alpha particle in metre is\",lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('de Broglie wavelength of alpha particle in metre is', 9.063964727801313e-13)\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.10, Page number 138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "L=25; #width of potential in armstrong\n",
+ "delta_x=0.05; #interval in armstrong\n",
+ "n=1; #particle is in its least energy\n",
+ "x=L/2; #particle is at the centre\n",
+ "pi=180; #angle in degrees\n",
+ "\n",
+ "#Calculation\n",
+ "pi=pi*0.0174532925; #angle in radians\n",
+ "L=L*10**-10; #width in m\n",
+ "delta_x=delta_x*10**-10; #interval in m\n",
+ "#probability P = integration of (A**2)*(math.sin(n*pi*x/L))**2*delta_x\n",
+ "#but A=math.sqrt(2/L)\n",
+ "#since the particle is in a small interval integration need not be applied\n",
+ "#therefore P=2*(L**(-1))*(math.sin(n*pi*x/L))**2*delta_x\n",
+ "P=2*(L**(-1))*((math.sin(n*pi*x/L))**2)*delta_x;\n",
+ "P=math.ceil(P*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"probability of finding the particle is\",P);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('probability of finding the particle is', 0.004)\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.11, Page number 138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "L=1; #width of potential well in angstrom\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-10; #converting angstrom into metre\n",
+ "E=((n**2)*h**2)/(8*m*L**2);\n",
+ "EeV=E/(1.6*10**-19); #converting J to eV\n",
+ "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lowest energy of electron in J is\",E);\n",
+ "print(\"lowest energy of electron in eV is\",EeV);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lowest energy of electron in J is', 6.030752197802197e-18)\n",
+ "('lowest energy of electron in eV is', 37.693)\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.12, Page number 139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "L=1; #width of potential well in angstrom\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-10; #converting angstrom into metre\n",
+ "E=(2*(n**2)*h**2)/(8*m*L**2);\n",
+ "E=E/(1.6*10**-19); #converting J to eV\n",
+ "E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lowest energy of system in eV is\",E);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lowest energy of system in eV is', 75.385)\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.13, Page number 139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "L=1; #width of potential well in angstrom\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-10; #converting angstrom into metre\n",
+ "#according to pauli's exclusion principle, 1st electron occupies n1=1 and second electron occupies n2=2\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "E=((2*(n1**2)*h**2)/(8*m*L**2))+(((n2**2)*h**2)/(8*m*L**2));\n",
+ "E=E/(1.6*10**-19); #converting J to eV\n",
+ "E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lowest energy of system in eV is\",E);\n",
+ "print(\"quantum numbers are\");\n",
+ "print(\"n=1,l=0,mL=0,mS=+1/2\");\n",
+ "print(\"n=1,l=0,mL=0,mS=-1/2\");\n",
+ "print(\"n=2,l=0,mL=0,mS=+1/2\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lowest energy of system in eV is', 226.154)\n",
+ "quantum numbers are\n",
+ "n=1,l=0,mL=0,mS=+1/2\n",
+ "n=1,l=0,mL=0,mS=-1/2\n",
+ "n=2,l=0,mL=0,mS=+1/2\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.14, Page number 140"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "L=100; #width of potential well in angstrom\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-10; #converting angstrom into metre\n",
+ "E=0.025; #lowest energy in eV\n",
+ "E=E*(1.6*10**-19); #converting eV to J\n",
+ "m=((n**2)*h**2)/(8*E*L**2);\n",
+ "\n",
+ "#Result\n",
+ "print(\"mass of the particle in kg is\",m);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('mass of the particle in kg is', 1.3719961249999998e-31)\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.15, Page number 141"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23;\n",
+ "T=6000; #temperature in K\n",
+ "h=6.626*10**-34; #plancks constant in Js\n",
+ "c=3*10**8; #velocity of light in m/s\n",
+ "lamda1=450; #wavelength in nm\n",
+ "lamda2=460; #wavelength in nm\n",
+ "\n",
+ "#Calculation\n",
+ "lamda1=lamda1*10**-9; #converting nm to metre\n",
+ "lamda2=lamda2*10**-9; #converting nm to metre\n",
+ "new1=c/lamda1;\n",
+ "new2=c/lamda2;\n",
+ "new=(new1+new2)/2;\n",
+ "A=math.exp((h*new)/(k*T));\n",
+ "rho_v=(8*math.pi*h*new**3)/(A*c**3);\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy density of the black body in J/m^3 is\",rho_v);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy density of the black body in J/m^3 is', 9.033622836188887e-16)\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb
new file mode 100755
index 00000000..f66bf1b2
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb
@@ -0,0 +1,900 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:be1bff093c78fabbeb6fefe6e4abb0ea03e38b876fbc4829ed2c2e8b1df1e947"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Crystallography"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.1, Page number 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=0.071; #radius in nm\n",
+ "N=6.022*10**26; \n",
+ "\n",
+ "#Calculation\n",
+ "r=r*10**-9; #converting r from nm to m\n",
+ "#mass of carbon atom m = 12/N\n",
+ "m=12/N;\n",
+ "#mass of diamond M = 8*mass of one carbon atom\n",
+ "M=8*m;\n",
+ "#volume of diamond V = (8*r/sqrt(3))^3\n",
+ "V=(8*r/math.sqrt(3))**3;\n",
+ "d=M/V; #density in kg/m^3\n",
+ "d=math.ceil(d*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"density of diamond in kg/m^3 is\",d);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('density of diamond in kg/m^3 is', 4520.31)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.2, Page number 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "aBCC=0.332; #lattice constant in nm\n",
+ "aHCP=0.296; #lattice constant in nm\n",
+ "c=0.468; #c in nm\n",
+ "\n",
+ "#Calculation\n",
+ "aBCC=aBCC*10**-9; #converting nm to m\n",
+ "Vbcc=aBCC**3;\n",
+ "aHCP=aHCP*10**-9; #converting nm to m\n",
+ "c=c*10**-9; #converting nm to m\n",
+ "Vhcp=6*(math.sqrt(3)/4)*aHCP**2*c;\n",
+ "V=Vhcp-Vbcc;\n",
+ "Vch=(V*100)/Vbcc;\n",
+ "Vch=math.ceil(Vch*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"percentage change in volume is\",Vch);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('percentage change in volume is', 191.12)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.3, Page number 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.278; #atomic radius of Cu in Angstrom\n",
+ "A=63.54; #atomic weight of Cu\n",
+ "n=4; #for FCC n=4\n",
+ "Na=6.022*10**26;\n",
+ "\n",
+ "#Calculation\n",
+ "r=r*10**-10; #converting atomic radius from Angstrom to m\n",
+ "a=2*math.sqrt(2)*r; \n",
+ "rho=(n*A)/(Na*a**3);\n",
+ "rho=math.ceil(rho*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"density of Cu in kg/m^3 is\",rho);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('density of Cu in kg/m^3 is', 8935.92)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.4, Page number 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=2180; #density of NaCl in kg/m^3\n",
+ "wNa=23; #atomic weight of Na\n",
+ "wCl=35.5; #atomic weight of Cl\n",
+ "n=4; #for FCC n=4\n",
+ "Na=6.022*10**26;\n",
+ "\n",
+ "#Calculation\n",
+ "A=wNa+wCl; #molecular weight of NaCl\n",
+ "x=np.reciprocal(3.);\n",
+ "a=((n*A)/(Na*rho))**x;\n",
+ "\n",
+ "#Result\n",
+ "print(\"interatomic distance in NaCl in m is\",a); \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interatomic distance in NaCl in m is', 5.6278114346454509e-10)\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.5, Page number 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.42; #lattice constant in nm\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=1; #indices of the plane (101)\n",
+ "h2=2;\n",
+ "k2=2;\n",
+ "l2=1; #indices of the plane (221)\n",
+ "\n",
+ "#Calculation\n",
+ "a=a*10**-9; #converting from nm to m\n",
+ "d1=a/math.sqrt((h1**2)+(k1**2)+(l1**2)); #interplanar spacing for plane (101)\n",
+ "d1=d1*10**9; #converting from m to nm\n",
+ "d1=math.ceil(d1*10**5)/10**5; #rounding off to 5 decimals\n",
+ "d2=a/math.sqrt((h2**2)+(k2**2)+(l2**2)); #interplanar spacing for plane (221)\n",
+ "d2=d2*10**9; #converting from m to nm\n",
+ "\n",
+ "#Result\n",
+ "print(\"interplanar spacing for (101) in nm is\",d1);\n",
+ "print(\"interplanar spacing for (221) in nm is\",d2);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interplanar spacing for (101) in nm is', 0.29699)\n",
+ "('interplanar spacing for (221) in nm is', 0.14)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.6, Page number 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=2; #indices for plane (102)\n",
+ "h2=2;\n",
+ "k2=3;\n",
+ "l2=1; #indices for plane (231)\n",
+ "h3=3;\n",
+ "k3=-1;\n",
+ "l3=2; #indices for plane (31'2)\n",
+ "\n",
+ "#Calculation\n",
+ "#intercepts made by the plane is a/h, b/k, c/l\n",
+ "#for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n",
+ "#for plane (231) intercepts are a/2, b/3, c/1=c\n",
+ "#for plane (31'2) intercepts are a/3=a, b/-1=-b, c/2\n",
+ "\n",
+ "#Result\n",
+ "print(\"for plane (102) intercepts are a/1=a, b/0=infinite, c/2\");\n",
+ "print(\"for plane (231) intercepts are a/2, b/3, c/1=c\");\n",
+ "print(\"for plane (312) intercepts are a/3=a, b/-1=-b, c/2\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n",
+ "for plane (231) intercepts are a/2, b/3, c/1=c\n",
+ "for plane (312) intercepts are a/3=a, b/-1=-b, c/2\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.7, Page number 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "u1=1;\n",
+ "v1=1;\n",
+ "w1=1; #indices for plane (111)\n",
+ "u2=2;\n",
+ "v2=1;\n",
+ "w2=2; #indices for plane (212)\n",
+ "\n",
+ "#Calculation\n",
+ "A=u1*u2+v1*v2+w1*w2; \n",
+ "B1=math.sqrt((u1**2)+(v1**2)+(w1**2));\n",
+ "B2=math.sqrt((u2**2)+(v2**2)+(w2**2));\n",
+ "B=A/(B1*B2);\n",
+ "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n",
+ "theta=math.acos(B); #angle in radian\n",
+ "theta=theta*57.2957795; #converting radian to degrees\n",
+ "theeta=math.ceil(theta*10**3)/10**3; #rounding off to 3 decimals\n",
+ "deg=int(theta); #converting to degrees\n",
+ "t=60*(theta-deg);\n",
+ "mi=int(t); #converting to minutes\n",
+ "sec=60*(t-mi); #converting to seconds\n",
+ "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"angle between the planes in degrees is\",theeta);\n",
+ "print(\"angle between the planes is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('angle between the planes in degrees is', 15.783)\n",
+ "('angle between the planes is', 15, 'degrees', 46, 'minutes', 57.85, 'seconds')\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.8, Page number 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.9, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.2338; #interplanar distance in nm\n",
+ "h=-1;\n",
+ "k=1;\n",
+ "l=1; #indices of the plane (1'11)\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**-9; #converting from nm to m\n",
+ "a=d*math.sqrt((h**2)+(k**2)+(l**2));\n",
+ "a=a*10**9; #converting lattice constant from m to nm\n",
+ "a=math.ceil(a*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lattice constant in nm is\",a);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lattice constant in nm is', 0.40496)\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.10, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=0; #indices for plane (100)\n",
+ "h2=1;\n",
+ "k2=1;\n",
+ "l2=0; #indices for plane (110)\n",
+ "h3=1;\n",
+ "k3=1;\n",
+ "l3=1; #indices for plane (111)\n",
+ "\n",
+ "#Calculation\n",
+ "#d=a/math.sqrt((h**2)+(k**2)+(l**2))\n",
+ "#d100=a/math.sqrt((h1**2)+(k1**2)+(l1**2))\n",
+ "x1=math.sqrt((h1**2)+(k1**2)+(l1**2));\n",
+ "#d100=a/x1 = a/1 = a\n",
+ "#d110=a/math.sqrt((h2**2)+(k2**2)+(l2**2))\n",
+ "x2=math.sqrt((h2**2)+(k2**2)+(l2**2));\n",
+ "x2=math.ceil(x2*10**4)/10**4; #rounding off to 4 decimals\n",
+ "#d110=a/x2 = a/sqrt(2)\n",
+ "#d111=a/math.sqrt((h3**2)+(k3**2)+(l3**2))\n",
+ "x3=math.sqrt((h3**2)+(k3**2)+(l3**2));\n",
+ "x3=math.ceil(x3*10**4)/10**4; #rounding off to 4 decimals\n",
+ "#d111=a/x3 = a/sqrt(3)\n",
+ "#hence d100:d110:d111=a:a/sqrt(2):a/sqrt(3)\n",
+ "#multiplying RHS by sqrt(6) we get d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n",
+ "\n",
+ "#Result\n",
+ "print(\"value of x1 is\",x1);\n",
+ "print(\"value of x2 is\",x2);\n",
+ "print(\"value of x3 is\",x3);\n",
+ "print(\"d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('value of x1 is', 1.0)\n",
+ "('value of x2 is', 1.4143)\n",
+ "('value of x3 is', 1.7321)\n",
+ "d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.11, Page number 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h=2;\n",
+ "k=3;\n",
+ "l=1; #indices for plane (231)\n",
+ "\n",
+ "#Calculation\n",
+ "#intercepts made by the plane is a/h, b/k, c/l\n",
+ "#for a cubic unit cell, a=b=c\n",
+ "#for plane (231) intercepts are a/2, a/3, a/1 = a\n",
+ "#ratio of the intercepts is 1/2:1/3:1\n",
+ "#LCM is 6. multiplying by LCM, we get ratio l1:l2:l3 = 3:2:6\n",
+ "\n",
+ "#Result\n",
+ "print(\"l1:l2:l3 = 3:2:6\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "l1:l2:l3 = 3:2:6\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.12, Page number 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h=1;\n",
+ "k=2;\n",
+ "l=3; #indices for plane (123)\n",
+ "l1=0.8; #l1 in armstrong\n",
+ "a=0.8; #a in armstrong\n",
+ "b=1.2; #b in armstrong\n",
+ "c=1.5; #c in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "#intercepts made by the plane is a/h, b/k, c/l\n",
+ "#for plane (123) intercepts are a/1 = a, b/2, c/3\n",
+ "#ratio of the intercepts l1:l2:l3 = a:b/2:c/3\n",
+ "#thus 0.8:l2:l3 = 0.8:1.2/2:1.5/3\n",
+ "l2=1.2/2; #l2 in armstrong\n",
+ "l3=1.5/3; #l3 in armstrong\n",
+ "\n",
+ "#Result\n",
+ "print(\"value of l2 in armstrong is\",l2);\n",
+ "print(\"value of l3 in armstrong is\",l3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('value of l2 in armstrong is', 0.6)\n",
+ "('value of l3 in armstrong is', 0.5)\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.13, Page number 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Result\n",
+ "print(\"in simple cubic unit cell nearest neighbour distance is a\");\n",
+ "print(\"in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\");\n",
+ "print(\"in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "in simple cubic unit cell nearest neighbour distance is a\n",
+ "in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\n",
+ "in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.14, Page number 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a=2.04; #lattice parameter in armstrong\n",
+ "h=2;\n",
+ "k=1;\n",
+ "l=2; #indices for plane (212)\n",
+ "\n",
+ "#Calculation\n",
+ "a=a*10**-10; #converting from armstrong to m\n",
+ "d=a/math.sqrt((h**2)+(k**2)+(l**2));\n",
+ "d=d*10**10; #converting from m to armstrong\n",
+ "d=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"interplanar distance in armstrong is\",d);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interplanar distance in armstrong is', 0.681)\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.15, Page number 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r=1.278; #radius of Cu in armstrong\n",
+ "M=63.54; #atomic weight of Cu\n",
+ "rho=8980; #density in kg/m^3\n",
+ "Na=6.022*10**26;\n",
+ "\n",
+ "#Calculation\n",
+ "r=r*10**-10; #radius in m\n",
+ "a=math.sqrt(8)*r;\n",
+ "n=(rho*Na*a**3)/M;\n",
+ "\n",
+ "#Result\n",
+ "print(\"interatomic distance in m is\",a);\n",
+ "print(\"number of atoms per Cu unit cell is\",int(n));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interatomic distance in m is', 3.6147298654256317e-10)\n",
+ "('number of atoms per Cu unit cell is', 4)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.16, Page number 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "a=0.429;\n",
+ "b=1;\n",
+ "c=0.379; #intercepts of an orthorhombic crystal\n",
+ "\n",
+ "#Calculation\n",
+ "#ratio of intercepts are 0.214:1:0.188 = (a/0.429)*0.214:1:(c/0.379)*0.188 = a/2:b:c/2\n",
+ "#thus the coefficients are 1/2:1:1/2. inverses are 2,1,2.\n",
+ "#thus miller indices for the first plane are (212)\n",
+ "#ratio of intercepts are 0.858:1:0.754 = (a/0.429)*0.0.858:1:(c/0.379)*0.754 = 2a:b:2c\n",
+ "#thus the coefficients are 2:1:2. inverses are 1/2,1,1/2. LCM is 2. multiplying with LCM we get 1,2,1\n",
+ "#thus miller indices for the second plane are (121)\n",
+ "#ratio of intercepts are 0.429:infinite:0.126 = (a/0.429)*0.429:infinite:(c/0.379)*0.126 = a:infiniteb:c/3\n",
+ "#thus the coefficients are 1:infinte:1/3. inverses are 1,0,3.\n",
+ "#thus miller indices for the third plane are (103)\n",
+ "\n",
+ "#Result\n",
+ "print(\"miller indices for the first plane are (212)\");\n",
+ "print(\"miller indices for the second plane are (121)\");\n",
+ "print(\"miller indices for the third plane are (103)\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "miller indices for the first plane are (212)\n",
+ "miller indices for the second plane are (121)\n",
+ "miller indices for the third plane are (103)\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.17, Page number 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#variable declaration\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=0; #indices of the first plane (100)\n",
+ "h2=1;\n",
+ "k2=1;\n",
+ "l2=0; #indices of the second plane (110)\n",
+ "h3=1;\n",
+ "k3=1;\n",
+ "l3=1; #indices of the third plane (111)\n",
+ "\n",
+ "#Calculation\n",
+ "n_1=np.reciprocal(4.);\n",
+ "n_2=np.reciprocal(2.);\n",
+ "n_3=np.reciprocal(6.);\n",
+ "n1=(n_1*4)+1; #number of atoms per unit cell in (100)\n",
+ "#number of atoms per m^2 is 2/a**2. but a=sqrt(8)*r.\n",
+ "#hence number of atoms per m^2 is 1/(4*r**2)\n",
+ "n2=(n_1*4)+(2*n_2); #number of atoms per unit cell in (110)\n",
+ "#number of atoms per m^2 is 1/a*sqrt(2)*a. but a=sqrt(8)*r.\n",
+ "#hence number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n",
+ "n3=(n_3*3)+(3*n_2); #number of atoms per unit cell in (111)\n",
+ "#number of atoms per m^2 is 2/(sqrt(3)/4)*a**2. but a=4*r.\n",
+ "#hence number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n",
+ "\n",
+ "#Result\n",
+ "print(\"number of atoms per unit cell in (100)\",n1);\n",
+ "print(\"number of atoms per m^2 is 1/(4*r**2)\");\n",
+ "print(\"number of atoms per unit cell in (110)\",n2);\n",
+ "print(\"number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\");\n",
+ "print(\"number of atoms per unit cell in (111)\",n3);\n",
+ "print(\"number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('number of atoms per unit cell in (100)', 2.0)\n",
+ "number of atoms per m^2 is 1/(4*r**2)\n",
+ "('number of atoms per unit cell in (110)', 2.0)\n",
+ "number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n",
+ "('number of atoms per unit cell in (111)', 2.0)\n",
+ "number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.18, Page number 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r=0.97; #radius of Na+ ion in armstrong\n",
+ "R=1.81; #radius of Cl- ion in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "#atomic packing factor=packing density PD\n",
+ "#PD=Volume of atoms/Volume of unit cell\n",
+ "#volume of unit cell=a**3\n",
+ "#volume of atoms=number of atoms*volume of 1 atom = 4*(4/3)*math.pi*r**3\n",
+ "#but r=a/sqrt(8). hence PD = 4*(4/3)*math.pi*(a/(2*sqrt(2)))**3*(1/a**3) = 0.74\n",
+ "#atomic packing factor = 0.74\n",
+ "r=r*10**-10; #radius of Na+ ion in m\n",
+ "R=R*10**-10; #radius of Cl- ion in m\n",
+ "Vna = (4*4*math.pi*r**3)/3; #volume of Na atoms\n",
+ "Vcl = (4*4*math.pi*R**3)/3; #volume of Cl atoms \n",
+ "V=(2*(r+R))**3; #volume of unit cell\n",
+ "IPF=(Vna+Vcl)/V; #ionic packing factor\n",
+ "IPF=math.ceil(IPF*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"atomic packing factor = 0.74\");\n",
+ "print(\"ionic packing factor of NaCl crystal is\",IPF);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "atomic packing factor = 0.74\n",
+ "('ionic packing factor of NaCl crystal is', 0.6671)\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_7.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_7.ipynb
new file mode 100755
index 00000000..706a4598
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_7.ipynb
@@ -0,0 +1,187 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f1c728f94d30127360e83c10a55164d3b256772685ed9e2e28ae6d78b3f4a0ae"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Crystal Imperfections"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.1, Page number 207 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23;\n",
+ "Ev=0.98; #energy in eV/atom\n",
+ "T1=900; #temperature in C\n",
+ "T2=1000;\n",
+ "A=6.022*10**26; #avagadro's constant\n",
+ "w=196.9; #atomic weight in g/mol\n",
+ "d=18.63; #density in g/cm^3\n",
+ "\n",
+ "#Calculation\n",
+ "Ev=Ev*1.6*10**-19; #converting eV to J\n",
+ "d=d*10**3; #converting g/cm^3 into kg/m^3\n",
+ "N=(A*d)/w;\n",
+ "n=N*math.exp(-Ev/(k*T1));\n",
+ "#let valency fraction n/N be V\n",
+ "V=math.exp(-Ev/(k*T2));\n",
+ "\n",
+ "#Result\n",
+ "print(\"concentration of atoms per m^3 is\",N);\n",
+ "print(\"number of vacancies per m^3 is\",n);\n",
+ "print(\"valency fraction is\",V);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('concentration of atoms per m^3 is', 5.69780904012189e+28)\n",
+ "('number of vacancies per m^3 is', 1.8742498047705634e+23)\n",
+ "('valency fraction is', 1.1625392535344139e-05)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.2, Page number 208 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23;\n",
+ "A=6.022*10**26; #avagadro's constant\n",
+ "T=1073; #temperature in K\n",
+ "n=3.6*10**23; #number of vacancies\n",
+ "d=9.5; #density in g/cm^3\n",
+ "w=107.9; #atomic weight in g/mol\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**3; #converting g/cm^3 into kg/m^3\n",
+ "N=(A*d)/w; #concentration of atoms\n",
+ "E=k*T*math.log((N/n), ); #energy in J\n",
+ "EeV=E/(1.602176565*10**-19); #energy in eV\n",
+ "EeV=math.ceil(EeV*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"concentration of atoms per m^3 is\",N);\n",
+ "print(\"energy for vacancy formation in J\",E);\n",
+ "print(\"energy for vacancy formation in eV\",EeV);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('concentration of atoms per m^3 is', 5.3020389249304915e+28)\n",
+ "('energy for vacancy formation in J', 1.762092900344914e-19)\n",
+ "('energy for vacancy formation in eV', 1.1)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.3, Page number 209 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=6.022*10**26; #avagadro's constant\n",
+ "k=1.38*10**-23;\n",
+ "w1=39.1; #atomic weight of K\n",
+ "w2=35.45; #atomic weight of Cl\n",
+ "Es=2.6; #energy formation in eV\n",
+ "T=500; #temperature in C\n",
+ "d=1.955; #density in g/cm^3\n",
+ "\n",
+ "#Calculation\n",
+ "Es=Es*1.6*10**-19; #converting eV to J\n",
+ "T=T+273; #temperature in K\n",
+ "d=d*10**3; #converting g/cm^3 into kg/m^3\n",
+ "N=(A*d)/(w1+w2);\n",
+ "n=N*math.exp(-Es/(2*k*T));\n",
+ "\n",
+ "#Result\n",
+ "print(\"number of Schotky defect per m^3 is\",n);\n",
+ "\n",
+ "#answer given in the book is wrong by 3rd decimal point"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('number of Schotky defect per m^3 is', 5.373777171020081e+19)\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb
new file mode 100755
index 00000000..1db414de
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_8.ipynb
@@ -0,0 +1,525 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1a361e48153d58a5820c879429a5bbafe3e6e3df7d99a198492b082874550ac1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Conducting materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.1, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "n=2.533*10**28; #concentration of electrons per m^3\n",
+ "e=1.6*10**-19;\n",
+ "tow_r=3.1*10**-14; #relaxation time in sec\n",
+ "\n",
+ "#Calculation\n",
+ "rho=m/(n*(e**2*tow_r));\n",
+ "\n",
+ "#Result\n",
+ "print(\"electrical resistivity in ohm metre is\",rho);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.2, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "s=3.75*10**3; #slope\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=2*k*s;\n",
+ "Eg=Eg/(1.6*10**-19); #converting J to eV\n",
+ "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"band gap of semiconductor in eV is\",Eg);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('band gap of semiconductor in eV is', 0.647)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.3, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=989; #temperature in C\n",
+ "k=1.38*10**-23;\n",
+ "#let E-EF be E\n",
+ "E=0.5; #occupied level of electron in eV\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "E=E*1.6*10**-19; #converting eV to J\n",
+ "#let fermi=dirac distribution function f(E) be f\n",
+ "f=1/(1+math.exp(E/(k*T)));\n",
+ "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"probability of occupation of electrons is\",f);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('probability of occupation of electrons is', 0.011)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.4, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_e=0.0035; #mobility of electrons in m^2/Vs\n",
+ "E=0.5; #electric field strength in V/m\n",
+ "\n",
+ "#Calculation\n",
+ "vd=mew_e*E;\n",
+ "vd=vd*10**3;\n",
+ "\n",
+ "#Result\n",
+ "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.5, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=6.022*10**23; #avagadro number\n",
+ "e=1.6*10**-19;\n",
+ "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n",
+ "w=63.5; #atomic weight \n",
+ "d=8.92*10**3; #density in kg/m^3\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**3;\n",
+ "sigma=1/rho;\n",
+ "sigmaa=sigma/10**7;\n",
+ "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n",
+ "n=(d*A)/w;\n",
+ "mew=sigma/(n*e); #mobility of electrons\n",
+ "mew=mew*10**3;\n",
+ "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n",
+ "print(\"concentration of carriers per m^3\",n);\n",
+ "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n",
+ "('concentration of carriers per m^3', 8.459250393700786e+28)\n",
+ "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.6, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=18.1*10**28; #concentration of electrons per m^3\n",
+ "h=6.62*10**-34; #planck constant in Js\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "\n",
+ "#Calculation\n",
+ "X=h**2/(8*me);\n",
+ "E_F0=X*(((3*n)/math.pi)**(2/3));\n",
+ "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n",
+ "\n",
+ "#Result\n",
+ "print(\"Fermi energy in eV is\",E_F0);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('Fermi energy in eV is', 3.762396978021977e-19)\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.7, Page number 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "E_F0=5.5; #fermi energy in eV\n",
+ "h=6.63*10**-34; #planck constant in Js\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "\n",
+ "#Calculation\n",
+ "E_F0=E_F0*1.6*10**-19; #converting eV to J\n",
+ "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n",
+ "\n",
+ "#Result\n",
+ "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n",
+ "\n",
+ "#answer given in the book is wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.8, Page number 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.07; #energy gap of silicon in eV\n",
+ "k=1.38*10**-23;\n",
+ "T=298; #temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=Eg*1.6*10**-19; #converting eV to J\n",
+ "#let the probability of electron f(E) be X\n",
+ "#X=1/(1+exp((E-Ef)/(k*T)))\n",
+ "#but E=Ec and Ec-Ef=Eg/2\n",
+ "X=1/(1+math.exp(Eg/(2*k*T)))\n",
+ "\n",
+ "#Result\n",
+ "print(\"probability of an electron thermally excited is\",X);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('probability of an electron thermally excited is', 9.122602463573379e-10)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.9, Page number 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23;\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "vf=0.86*10**6; #fermi velocity in m/sec\n",
+ "\n",
+ "#Calculation\n",
+ "Efj=(m*vf**2)/2;\n",
+ "Ef=Efj/(1.6*10**-19); #converting J to eV\n",
+ "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n",
+ "Tf=Efj/k;\n",
+ "Tf=Tf/10**4;\n",
+ "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fermi energy of metal in J is\",Efj);\n",
+ "print(\"fermi energy of metal in eV is\",Ef);\n",
+ "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fermi energy of metal in J is', 3.3651800000000002e-19)\n",
+ "('fermi energy of metal in eV is', 2.104)\n",
+ "('fermi temperature in K is', 2.4386, '*10**4')\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.10, Page number 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n",
+ "K=387; #thermal conductivity of Cu in W/mK\n",
+ "T=27; #temperature in C\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "L=K/(sigma*T);\n",
+ "\n",
+ "#Result\n",
+ "print(\"lorentz number in W ohm/K^2 is\",L);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.11, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of the electron in kg\n",
+ "e=1.6*10**-19;\n",
+ "k=1.38*10**-23;\n",
+ "n=8.49*10**28; #concentration of electrons in Cu per m^3\n",
+ "tow_r=2.44*10**-14; #relaxation time in sec\n",
+ "T=20; #temperature in C\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "sigma=(n*(e**2)*tow_r)/m;\n",
+ "sigmaa=sigma/10**7;\n",
+ "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n",
+ "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n",
+ "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n",
+ "L=K/(sigma*T);\n",
+ "\n",
+ "#Result\n",
+ "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n",
+ "print(\"thermal conductivity in W/mK is\",K);\n",
+ "print(\"Lorentz number in W ohm/K^2 is\",L);\n",
+ "\n",
+ "#answer for lorentz number given in the book is wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n",
+ "('thermal conductivity in W/mK is', 417.89)\n",
+ "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_9.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_9.ipynb
new file mode 100755
index 00000000..bcdb04e8
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_9.ipynb
@@ -0,0 +1,593 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0873412d6a4e98969b64a50f25d022cd9e4d104c8635e0bc9bd27817ed58d4b4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Semiconducting materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.1, Page number 266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_e=0.36; #mobility of electrons in m^2/Vs\n",
+ "mew_h=0.14; #mobility of holes in m^2/Vs\n",
+ "sigma=2.2; #conductivity in ohm-1 m-1\n",
+ "T=300; #temperature in K\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "ni=sigma/(e*(mew_e+mew_h)); #carrier concentration per m^3\n",
+ "\n",
+ "#Result\n",
+ "print(\"carrier concentration of an intrinsic semiconductor per m^3 is\",ni);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('carrier concentration of an intrinsic semiconductor per m^3 is', 2.75e+19)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.2, Page number 266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "import numpy as np\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T1=20; #temperature in C\n",
+ "T2=100; #temperature in C\n",
+ "sigma_i20=250; #conductivity in ohm-1 m-1\n",
+ "sigma_i100=1100; #conductivity in ohm-1 m-1\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "T1K=T1+273; #temperature in K\n",
+ "T2K=T2+273; #temperature in K\n",
+ "T_1K=T1K**(-1);\n",
+ "T_2K=T2K**(-1);\n",
+ "T_1=T_2K-T_1K;\n",
+ "T_2=T2K/T1K;\n",
+ "Tk=T_1**(-1);\n",
+ "T_k=(T_2)**(3/2);\n",
+ "#intrinsic carrier concentration at T1K is ni20 = 2*((2*math.pi*k*m*293)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*293))\n",
+ "#intrinsic carrier concentration at T2K is ni100 = 2*((2*math.pi*k*m*373)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*373))\n",
+ "#dividing ni20/ni100 = (293/373)**(3/2)*(math.exp(-Eg/(2*k*293))/math.exp(-Eg/(2*k*373)))\n",
+ "#ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))\n",
+ "#sigma_i20/sigma_i100 = (ni20*e*(mew_e+mew_h))/(ni100*e*(mew_e+mew_h)) = ni20/ni100\n",
+ "#therefore sigma_i20/sigma_i100 = ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))\n",
+ "#math.exp((-Eg/(2*k))*((1/293)-(1/373))) = (sigma_i20/sigma_i100)*(373/293)**(3/2)\n",
+ "#by taking log on both sides we get (-Eg/(2*k))*((1/293)-(1/373)) = np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))\n",
+ "#Eg=2*k*(((1/373)-(1/293))**(-1))*np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))\n",
+ "Eg=2*k*Tk*np.log((sigma_i20/sigma_i100)*T_k); #band gap in J\n",
+ "EgeV=Eg*6.241*10**18; #converting J to eV\n",
+ "EgeV=math.ceil(EgeV*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"band gap of the semiconductor in J is\",Eg);\n",
+ "print(\"band gap of the semiconductor in eV is\",EgeV);\n",
+ "\n",
+ "#answer for band gap in eV given in the book is wrong in the 4th decimal point"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('band gap of the semiconductor in J is', 4.2210259829756855e-20)\n",
+ "('band gap of the semiconductor in eV is', 0.2635)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.3, Page number 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=10**-2; #current in Ampere\n",
+ "l=100; #length in mm\n",
+ "d=1; #thickness in mm\n",
+ "w=10; #breadth in mm\n",
+ "B=0.5; #magnetic field in Wb/m^2\n",
+ "RH=3.66*10**-4; #hall coefficient in m^3/C\n",
+ "\n",
+ "#Calculation\n",
+ "w=w*10**-3; #width in m\n",
+ "VH=(B*I*RH)/w; #hall voltage\n",
+ "VH=VH*10**4;\n",
+ "\n",
+ "#Result\n",
+ "print(\"Hall voltage in V is\",VH,\"*10**-4\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('Hall voltage in V is', 1.83, '*10**-4')\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.4, Page number 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "sigma=300; #conductivity in S/cm\n",
+ "T=300; #temperature in K\n",
+ "ni=1.5*10**10 #carrier concentration per cm^3\n",
+ "mew_e=1300; #mobility of electrons in cm^2/Vs\n",
+ "mew_h=500; #mobility of holes in cm^2/Vs\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=sigma*10**2; #sigma in S/m\n",
+ "mew_e=mew_e*10**-4; #mobility of electrons in m^2/Vs\n",
+ "ND=sigma/(e*mew_e); #concentration of electron per m^3\n",
+ "ni=ni*10**6; #carrier concentration per m^3\n",
+ "p=ni**2/ND; #hole concentration per m^3\n",
+ "p=p/10**8;\n",
+ "p=math.ceil(p*10**3)/10**3; #rounding off to 3 decimals\n",
+ "mew_h=mew_h*10**-4; #mobility of holes in m^2/Vs\n",
+ "NA=sigma/(e*mew_h); #concentration of hole per m^3\n",
+ "n=ni**2/NA; #electron concentration per m^3\n",
+ "n=n/10**7;\n",
+ "\n",
+ "#Result\n",
+ "print(\"concentration of electron for N-type semiconductor per m^3\",ND);\n",
+ "print(\"hole concentration per m^3\",p,\"*10**8\");\n",
+ "print(\"concentration of hole for P-type semiconductor per m^3\",NA);\n",
+ "print(\"electron concentration per m^3\",int(n),\"*10**7\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('concentration of electron for N-type semiconductor per m^3', 1.4423076923076921e+24)\n",
+ "('hole concentration per m^3', 1.561, '*10**8')\n",
+ "('concentration of hole for P-type semiconductor per m^3', 3.7499999999999995e+24)\n",
+ "('electron concentration per m^3', 6, '*10**7')\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.5, Page number 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=-3.68*10**-5; #hall coefficient in m^3/C\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "#hall coefficient is negative implies charge carriers are electrons\n",
+ "n=(3*math.pi)/(8*(-RH)*e); #carrier concentration\n",
+ "\n",
+ "#Result\n",
+ "print(\"charge carriers are electrons\");\n",
+ "print(\"carrier concentration per m^3 is\",n);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "charge carriers are electrons\n",
+ "('carrier concentration per m^3 is', 2.000844505937792e+23)\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.6, Page number 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg1=0.36; #energy gap of 1st material in eV\n",
+ "Eg2=0.72; #energy gap of 2nd material in eV\n",
+ "T=300; #temperature in K\n",
+ "mh=9*10**-31;\n",
+ "me=9*10**-31; \n",
+ "#given that 2*k*T=0.052; \n",
+ "#consider X=2*k*T\n",
+ "X=0.052;\n",
+ "\n",
+ "#Calculation\n",
+ "#intrinsic carrier concentration for A niA = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.36/(2*k*T))\n",
+ "#intrinsic carrier concentration for B niB = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.72/(2*k*T))\n",
+ "#dividing niA/niB = math.exp(-0.36/(2*k*T))*math.exp(0.72/(2*k*T))\n",
+ "#let niA/niB be A\n",
+ "A = math.exp(-0.36/X)*math.exp(0.72/X);\n",
+ "A=A/10**3;\n",
+ "A=math.ceil(A*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"ratio of intrinsic carrier densities of A and B is\",A,\"*10**3\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('ratio of intrinsic carrier densities of A and B is', 1.01544, '*10**3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.7, Page number 270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ND=2*10**22; #concentration of electron per m^3\n",
+ "sigma=112; #conductivity in ohm-1 m-1\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "mew=sigma/(ND*e); #mobility of electrons \n",
+ "mew=math.ceil(mew*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"mobility of electrons in m^2/Vs is\",mew);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('mobility of electrons in m^2/Vs is', 0.035)\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.8, Page number 270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=500; #thickness in micrometre\n",
+ "A=2.5*10**-3; #area of cross section in cm^-2\n",
+ "Ix=1; #current in ampere\n",
+ "Bz=10; #magnetic field in Wb/cm^2\n",
+ "n=10**16; #donor concentration in m^-3\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "Bz=Bz*10**-4; #magnetic field in Wb/m^2\n",
+ "w=w*10**-6; #thickness in m\n",
+ "RH=(3*math.pi)/(8*n*e); #hall coefficient\n",
+ "VH=(Bz*Ix*RH)/w; #hall voltage\n",
+ "VH=VH/10**3;\n",
+ "VH=math.ceil(VH*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"hall voltage in V is\",VH,\"*10**3\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('hall voltage in V is', 1.4727, '*10**3')\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.9, Page number 271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "import numpy as np\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.2; #energy gap in eV\n",
+ "T1=300; #temperature in K\n",
+ "T2=600; #temperature in K\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "T_1=T1**(-1);\n",
+ "T_2=T2**(-1);\n",
+ "T=T_1-T_2;\n",
+ "Eg=Eg*1.602*10**-19; #Eg in J\n",
+ "#sigma_300=ni300*e*(mew_e+mew_h)\n",
+ "#sigma_600=ni600*e*(mew_e+mew_h)\n",
+ "#sigma_600/sigma_300 = ni600/ni300\n",
+ "#ni600/ni300 =((T2/T1)**(3/2))*math.exp(-Eg/(2*k*T2))*math.exp(Eg/(2*k*T1));\n",
+ "#ni600/ni300 =((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T;\n",
+ "#let ni600/ni300 be X\n",
+ "X=((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"ratio between the conductivity of material is\",int(X));\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('ratio between the conductivity of material is', 311270)\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.10, Page number 272"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "sigma=10**-6; #electrical conductivity in ohm-1 m-1\n",
+ "mew_e=0.85; #electron mobility in m^2/Vs\n",
+ "mew_h=0.04; #hole mobility in m^2/Vs\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "ni=sigma/(e*(mew_e+mew_h)); #intrinsic carrier concentration\n",
+ "ni=ni/10**12;\n",
+ "ni=math.ceil(ni*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"intrinsic carrier concentration per m^3 is\",ni,\"*10**12\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('intrinsic carrier concentration per m^3 is', 7.0225, '*10**12')\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.11, Page number 272"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho_p=10; #resistivity of p-type Si in ohm cm\n",
+ "rho_n=10; #resistivity of n-type Si in ohm cm\n",
+ "mew_e=1350; #electron mobility in cm^2/Vs\n",
+ "mew_h=480; #hole mobility in cm^2/Vs\n",
+ "ni=1.5*10**10; #carrier concentration in cm^-3\n",
+ "e=1.6*10**-19; #electron charge in C\n",
+ "\n",
+ "#Calculation\n",
+ "rho_p=rho_p*10**-2;#resistivity of p-type Si in ohm m\n",
+ "sigma_p=1/rho_p; #electrical conductivity\n",
+ "mew_h=mew_h*10**-3;\n",
+ "NA=sigma_p/(e*mew_h); #acceptor concentration\n",
+ "ni=ni*10**6; #carrier concentration in m^-3\n",
+ "n=ni**2/NA; #concentration of minority carriers in m^-3\n",
+ "n=n/10**12;\n",
+ "n=math.ceil(n*10**4)/10**4; #rounding off to 4 decimals\n",
+ "rho_n=rho_n*10**-2; #resistivity of n-type Si in ohm m\n",
+ "sigma_n=1/rho_n; #electrical conductivity\n",
+ "mew_e=mew_e*10**-3;\n",
+ "ND=sigma_n/(e*mew_e); #donor concentration\n",
+ "p=(ni**2)/ND; #concentration of minority carriers in m^-3\n",
+ "p=p/10**12;\n",
+ "p=math.ceil(p*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"donor concentration per m^3 is\",ND);\n",
+ "print(\"concentration of minority carriers per m^3\",p,\"*10**12\");\n",
+ "print(\"acceptor concentration per m^3 is\",NA);\n",
+ "print(\"concentration of minority carriers per m^3 is\",n,\"*10**12\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('donor concentration per m^3 is', 4.6296296296296284e+19)\n",
+ "('concentration of minority carriers per m^3', 4.861, '*10**12')\n",
+ "('acceptor concentration per m^3 is', 1.3020833333333331e+20)\n",
+ "('concentration of minority carriers per m^3 is', 1.7281, '*10**12')\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/README.txt b/Engineering_Physics_by_A._Marikani/README.txt
new file mode 100755
index 00000000..00ccdb95
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/README.txt
@@ -0,0 +1,10 @@
+Contributed By: SINDHU ARROJU
+Course: btech
+College/Institute/Organization: JNTUH
+Department/Designation: Computer Science
+Book Title: Engineering Physics
+Author: A. Marikani
+Publisher: PHI Learning ( New Delhi )
+Year of publication: 2009
+Isbn: 9788120339392
+Edition: 1 \ No newline at end of file
diff --git a/Engineering_Physics_by_A._Marikani/screenshots/screenshot1.PNG b/Engineering_Physics_by_A._Marikani/screenshots/screenshot1.PNG
new file mode 100755
index 00000000..419ba452
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/screenshots/screenshot1.PNG
Binary files differ
diff --git a/Engineering_Physics_by_A._Marikani/screenshots/screenshot2.PNG b/Engineering_Physics_by_A._Marikani/screenshots/screenshot2.PNG
new file mode 100755
index 00000000..bf169152
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/screenshots/screenshot2.PNG
Binary files differ
diff --git a/Engineering_Physics_by_A._Marikani/screenshots/screenshot3.PNG b/Engineering_Physics_by_A._Marikani/screenshots/screenshot3.PNG
new file mode 100755
index 00000000..4062fb31
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/screenshots/screenshot3.PNG
Binary files differ