diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch) | |
tree | 22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Engineering_Physics_by_A._Marikani/Chapter_10.ipynb | |
parent | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff) | |
download | Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2 Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip |
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_A._Marikani/Chapter_10.ipynb')
-rwxr-xr-x | Engineering_Physics_by_A._Marikani/Chapter_10.ipynb | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_10.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_10.ipynb new file mode 100755 index 00000000..cad8c3fc --- /dev/null +++ b/Engineering_Physics_by_A._Marikani/Chapter_10.ipynb @@ -0,0 +1,304 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:e2ed8f14e9384f32112bf8b476c63d65b4316d749e72b2c8fa7bc92794bf7f8a" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Magnetic materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.1, Page number 305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "H=10**6; #magnetic field strength in A/m\n", + "chi=0.5*10**-5; #magnetic susceptibility\n", + "\n", + "#Calculation\n", + "mew0=4*math.pi*10**-7;\n", + "M=chi*H;\n", + "B=mew0*(M+H);\n", + "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", + "\n", + "#Result\n", + "print(\"intensity of magnetisation in A/m is\",M);\n", + "print(\"flux density in Wb/m^2 is\",B);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('intensity of magnetisation in A/m is', 5.0)\n", + "('flux density in Wb/m^2 is', 1.257)\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.2, Page number 306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "A=6.022*10**23; #avagadro number\n", + "mew0=4*math.pi*10**-7;\n", + "w=58.7; #atomic weight of Ni\n", + "B=0.65; #saturation magnetic induction in Wb/m^2\n", + "rho=8906; #density in kg/m^3\n", + "\n", + "#Calculation\n", + "rho=rho*10**3; #converting into gm/m^3\n", + "N=(rho*A)/w;\n", + "mew_m=B/(N*mew0);\n", + "#mew_m/(9.27*10^-24) gives mew_m in mewB\n", + "mew_m=mew_m/(9.27*10**-24);\n", + "mew_m=math.ceil(mew_m*10**3)/10**3; #rounding off to 3 decimals\n", + "\n", + "#Result\n", + "print(\"magnetic moment of Ni is\",mew_m,\"mew_b\");\n", + "#that is mew_m=0.61 mew_b" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('magnetic moment of Ni is', 0.611, 'mew_b')\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.3, Page number 306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "mew_0=4*math.pi*10**-7;\n", + "H=1800; #magnetic field in A/m\n", + "phi=3*10**-5; #magnetic flux in Wb\n", + "A=0.2; #area of cross section in cm^2\n", + "\n", + "#Calculation\n", + "A=A*10**-4; #area in m^2\n", + "B=phi/A;\n", + "mew_r=B/(mew_0*H);\n", + "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n", + "\n", + "#Result\n", + "print(\"permeability of material is\",mew_r);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('permeability of material is', 663.146)\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.4, Page number 307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "mew=18.4; #magnetic moment in mew_b\n", + "a=0.835; #lattice parameter in nm\n", + "\n", + "#Calculation\n", + "mew=mew*9.27*10**-24;\n", + "a=a*10**-9; #converting nm to m\n", + "V=a**3;\n", + "M=mew/V;\n", + "M=M/10**5;\n", + "M=math.ceil(M*10**4)/10**4; #rounding off to 4 decimals\n", + "\n", + "#Result\n", + "print(\"saturation magnetisation in A/m is\",M,\"*10**5\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('saturation magnetisation in A/m is', 2.9299, '*10**5')\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.5, Page number 307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "mew_0=4*math.pi*10**-7;\n", + "H=2*10**5; #magnetic field strength in A/m\n", + "mew_r=1.01; #relative permeability\n", + "\n", + "#Calculation\n", + "B=mew_0*mew_r*H;\n", + "B=math.ceil(B*10**5)/10**5; #rounding off to 3 decimals\n", + "M=(B/mew_0)-H;\n", + "M=math.ceil(M*10**2)/10**2; #rounding off to 2 decimals\n", + "\n", + "#Result\n", + "print(\"magnetic flux density in Wb/m^2 is\",B);\n", + "print(\"magnetisation in A/m is\",M);\n", + "\n", + "#answer for magnetisation given in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('magnetic flux density in Wb/m^2 is', 0.25385)\n", + "('magnetisation in A/m is', 2007.42)\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.6, Page number 307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "mew_0=4*math.pi*10**-7;\n", + "H=500; #magnetic field strength in A/m\n", + "chi=1.2; #susceptibility\n", + "\n", + "#Calculation\n", + "M=chi*H;\n", + "B=mew_0*(M+H);\n", + "B=B*10**3;\n", + "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", + "\n", + "#Result\n", + "print(\"magnetic flux density in Wb/m^2 is\",B,\"*10**-3\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "('magnetic flux density in Wb/m^2 is', 1.3824, '*10**-3')\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |