summaryrefslogtreecommitdiff
path: root/Engineering_Physics_/Chapter10.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Engineering_Physics_/Chapter10.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Engineering_Physics_/Chapter10.ipynb')
-rwxr-xr-xEngineering_Physics_/Chapter10.ipynb306
1 files changed, 306 insertions, 0 deletions
diff --git a/Engineering_Physics_/Chapter10.ipynb b/Engineering_Physics_/Chapter10.ipynb
new file mode 100755
index 00000000..f0870466
--- /dev/null
+++ b/Engineering_Physics_/Chapter10.ipynb
@@ -0,0 +1,306 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:38e4520c8655f11fdcb5696673580e95d36ab2ce43843aea287c93b1f1a0b257"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "10: Quantum Physics and Schrodinger wave equation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.1, Page number 258"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.625*10**-34; #planck's constant(Jsec)\n",
+ "deltax=10**-8; #uncertainity in position(m)\n",
+ "\n",
+ "#Calculation\n",
+ "deltap=(h/(2*math.pi*deltax)); #uncertainity principle(kgm/sec)\n",
+ "deltav=(deltap/me); #minimum uncertainity in velocity(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in velocity is\",round(deltav/10**5,3),\"*10**5 m/sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "minimum uncertainity in velocity is 0.116 *10**5 m/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.2, Page number 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=0.2865*10**-10; #wavelength(m)\n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planck's constant(Jsec)\n",
+ "q=1.6*10**-19; #charge of proton(C)\n",
+ "\n",
+ "#Calculation\n",
+ "v=(h/(mp*lamda)); #velocity(m/sec)\n",
+ "KE=0.5*mp*(v**2); #kinetic energy of proton(J)\n",
+ "KE=KE/q; #kinetic energy of proton(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy of proton is\",int(KE),\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "kinetic energy of proton is 1 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.3, Page number 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "KE=0.025; #kinetic energy of neutron(eV)\n",
+ "q=1.6*10**-19; #charge of proton(C)\n",
+ "mn=1.676*10**-27; #mass of neutron(kg)\n",
+ "h=6.625*10**-34; #planck's constant(Jsec)\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "KE=KE*q; #kinetic energy of neutron(J)\n",
+ "v=math.sqrt((2*KE)/mn); #velocity(m/s)\n",
+ "lamdan=h/(mn*v); #debroglie wavelength of neutron(m)\n",
+ "p=(h/lamdan); #momentum of electron and photon(kgm/s)\n",
+ "ve=(p/me); #velocity of electron(m/s)\n",
+ "Ee=0.5*p*ve; #energy of electron(J)\n",
+ "Ee=Ee/q; #energy of electron(eV)\n",
+ "Ep=h*c/lamdan; #energy of photon(J)\n",
+ "Ep=Ep/q; #energy of photon(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of beam of neutron is\",round(lamdan*10**10,3),\"angstrom\"\n",
+ "print \"momentum of electron and photon is\",p,\"kgm/s\"\n",
+ "print \"energy of electron is\",round(Ee,2),\"eV\"\n",
+ "print \"energy of photon is\",round(Ep/10**3,2),\"*10**3 eV\"\n",
+ "print \"answers in the book vary due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of beam of neutron is 1.809 angstrom\n",
+ "momentum of electron and photon is 3.66169359723e-24 kgm/s\n",
+ "energy of electron is 46.04 eV\n",
+ "energy of photon is 6.87 *10**3 eV\n",
+ "answers in the book vary due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.4, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge of electron(C)\n",
+ "V=200; #potential difference(V)\n",
+ "lamda=0.0202*10**-10; #debroglie wavelength(m)\n",
+ "h=6.625*10**-34; #planck's constant(Jsec)\n",
+ "\n",
+ "#Calculation\n",
+ "#eV=0.5*m*(v^2)\n",
+ "#mv=sqrt(2*m*eV)\n",
+ "m=((h**2)/(2*(lamda**2)*e*V)); #mass of particle(kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"mass of particle is\",m,\"kg\"\n",
+ "print \"hence it is a proton\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mass of particle is 1.68069555834e-27 kg\n",
+ "hence it is a proton\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.5, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mn=1.676*10**-27; #mass of neutron(kg)\n",
+ "e=1.6*10**-19; #charge of electron(C)\n",
+ "h=6.622*10**-34; #planck's constant(Jsec)\n",
+ "\n",
+ "#Calculation\n",
+ "E=e; #energy of neutron(J)\n",
+ "v=math.sqrt((2*E)/mn); #velocity of neutron(m/sec)\n",
+ "lamda=(h/(mn*v)); #de-broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength of neutron is\",round(lamda*10**10,3),\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de-broglie wavelength of neutron is 0.286 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.6, Page number 261"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r=10**-14; #radius(m)\n",
+ "h=6.625*10**-34; #planck's constant(Jsec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "mo=9.1*10**-31; #rest mass of particle(kg)\n",
+ "q=1.6*10**-19; #charge of electron(C)\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#acc. to uncertainity principle delx*delp >= (h/2*%pi)\n",
+ "deltax=2*r; #uncertainity in position(m)\n",
+ "deltap=(h/(2*math.pi*deltax)); ##uncertainity in momentum\n",
+ "#from einstein's relavistic relation E=mc2=KE+rest mass energy=0.5mv2+moc2\n",
+ "#when velocity of particle is very high\n",
+ "#m=(mo/sqrt(1-((v/c)^2))) where m-mass of particle with velocity v,mo-rest mass of particle, c-velocity of particle\n",
+ "p=deltap #assume\n",
+ "E=math.sqrt(((p*c)**2)+((mo*(c**2))**2)); #energy(J)\n",
+ "E=E/q; #energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy is\",round(E/10**6),\"MeV\"\n",
+ "print \"this value is much higher than experimentally obtained values of energy of electron of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy is 10.0 MeV\n",
+ "this value is much higher than experimentally obtained values of energy of electron of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file