From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Engineering_Physics_/Chapter10.ipynb | 306 +++++++++++++++++++++++++++++++++++ 1 file changed, 306 insertions(+) create mode 100755 Engineering_Physics_/Chapter10.ipynb (limited to 'Engineering_Physics_/Chapter10.ipynb') diff --git a/Engineering_Physics_/Chapter10.ipynb b/Engineering_Physics_/Chapter10.ipynb new file mode 100755 index 00000000..f0870466 --- /dev/null +++ b/Engineering_Physics_/Chapter10.ipynb @@ -0,0 +1,306 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:38e4520c8655f11fdcb5696673580e95d36ab2ce43843aea287c93b1f1a0b257" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "10: Quantum Physics and Schrodinger wave equation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.1, Page number 258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "me=9.1*10**-31; #mass of electron(kg)\n", + "h=6.625*10**-34; #planck's constant(Jsec)\n", + "deltax=10**-8; #uncertainity in position(m)\n", + "\n", + "#Calculation\n", + "deltap=(h/(2*math.pi*deltax)); #uncertainity principle(kgm/sec)\n", + "deltav=(deltap/me); #minimum uncertainity in velocity(m/sec)\n", + "\n", + "#Result\n", + "print \"minimum uncertainity in velocity is\",round(deltav/10**5,3),\"*10**5 m/sec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum uncertainity in velocity is 0.116 *10**5 m/sec\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.2, Page number 259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=0.2865*10**-10; #wavelength(m)\n", + "mp=1.67*10**-27; #mass of proton(kg)\n", + "h=6.625*10**-34; #planck's constant(Jsec)\n", + "q=1.6*10**-19; #charge of proton(C)\n", + "\n", + "#Calculation\n", + "v=(h/(mp*lamda)); #velocity(m/sec)\n", + "KE=0.5*mp*(v**2); #kinetic energy of proton(J)\n", + "KE=KE/q; #kinetic energy of proton(eV)\n", + "\n", + "#Result\n", + "print \"kinetic energy of proton is\",int(KE),\"eV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kinetic energy of proton is 1 eV\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.3, Page number 259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "KE=0.025; #kinetic energy of neutron(eV)\n", + "q=1.6*10**-19; #charge of proton(C)\n", + "mn=1.676*10**-27; #mass of neutron(kg)\n", + "h=6.625*10**-34; #planck's constant(Jsec)\n", + "me=9.1*10**-31; #mass of electron(kg)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "\n", + "#Calculation\n", + "KE=KE*q; #kinetic energy of neutron(J)\n", + "v=math.sqrt((2*KE)/mn); #velocity(m/s)\n", + "lamdan=h/(mn*v); #debroglie wavelength of neutron(m)\n", + "p=(h/lamdan); #momentum of electron and photon(kgm/s)\n", + "ve=(p/me); #velocity of electron(m/s)\n", + "Ee=0.5*p*ve; #energy of electron(J)\n", + "Ee=Ee/q; #energy of electron(eV)\n", + "Ep=h*c/lamdan; #energy of photon(J)\n", + "Ep=Ep/q; #energy of photon(eV)\n", + "\n", + "#Result\n", + "print \"wavelength of beam of neutron is\",round(lamdan*10**10,3),\"angstrom\"\n", + "print \"momentum of electron and photon is\",p,\"kgm/s\"\n", + "print \"energy of electron is\",round(Ee,2),\"eV\"\n", + "print \"energy of photon is\",round(Ep/10**3,2),\"*10**3 eV\"\n", + "print \"answers in the book vary due to rounding off errors\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of beam of neutron is 1.809 angstrom\n", + "momentum of electron and photon is 3.66169359723e-24 kgm/s\n", + "energy of electron is 46.04 eV\n", + "energy of photon is 6.87 *10**3 eV\n", + "answers in the book vary due to rounding off errors\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.4, Page number 260" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge of electron(C)\n", + "V=200; #potential difference(V)\n", + "lamda=0.0202*10**-10; #debroglie wavelength(m)\n", + "h=6.625*10**-34; #planck's constant(Jsec)\n", + "\n", + "#Calculation\n", + "#eV=0.5*m*(v^2)\n", + "#mv=sqrt(2*m*eV)\n", + "m=((h**2)/(2*(lamda**2)*e*V)); #mass of particle(kg)\n", + "\n", + "#Result\n", + "print \"mass of particle is\",m,\"kg\"\n", + "print \"hence it is a proton\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mass of particle is 1.68069555834e-27 kg\n", + "hence it is a proton\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.5, Page number 260" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "mn=1.676*10**-27; #mass of neutron(kg)\n", + "e=1.6*10**-19; #charge of electron(C)\n", + "h=6.622*10**-34; #planck's constant(Jsec)\n", + "\n", + "#Calculation\n", + "E=e; #energy of neutron(J)\n", + "v=math.sqrt((2*E)/mn); #velocity of neutron(m/sec)\n", + "lamda=(h/(mn*v)); #de-broglie wavelength(m)\n", + "\n", + "#Result\n", + "print \"de-broglie wavelength of neutron is\",round(lamda*10**10,3),\"angstrom\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "de-broglie wavelength of neutron is 0.286 angstrom\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 10.6, Page number 261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "r=10**-14; #radius(m)\n", + "h=6.625*10**-34; #planck's constant(Jsec)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "mo=9.1*10**-31; #rest mass of particle(kg)\n", + "q=1.6*10**-19; #charge of electron(C)\n", + "\n", + "\n", + "#Calculation\n", + "#acc. to uncertainity principle delx*delp >= (h/2*%pi)\n", + "deltax=2*r; #uncertainity in position(m)\n", + "deltap=(h/(2*math.pi*deltax)); ##uncertainity in momentum\n", + "#from einstein's relavistic relation E=mc2=KE+rest mass energy=0.5mv2+moc2\n", + "#when velocity of particle is very high\n", + "#m=(mo/sqrt(1-((v/c)^2))) where m-mass of particle with velocity v,mo-rest mass of particle, c-velocity of particle\n", + "p=deltap #assume\n", + "E=math.sqrt(((p*c)**2)+((mo*(c**2))**2)); #energy(J)\n", + "E=E/q; #energy(eV)\n", + "\n", + "#Result\n", + "print \"energy is\",round(E/10**6),\"MeV\"\n", + "print \"this value is much higher than experimentally obtained values of energy of electron of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy is 10.0 MeV\n", + "this value is much higher than experimentally obtained values of energy of electron of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus\n" + ] + } + ], + "prompt_number": 19 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit