diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6.ipynb')
-rwxr-xr-x | Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6.ipynb | 865 |
1 files changed, 0 insertions, 865 deletions
diff --git a/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6.ipynb b/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6.ipynb deleted file mode 100755 index 132d528e..00000000 --- a/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6.ipynb +++ /dev/null @@ -1,865 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:9ef5ece6306ffa16c2ffcc65ec333fb8c0d5110178a48d187af26c27d16cf8df"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter6:ELECTROMAGNETICS"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg1:pg-206"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from sympy import *\n",
- "r=1 #radius in meter\n",
- "H=2 #magnitude of field vector in amp/meter\n",
- "pi=Symbol('pi')\n",
- "I=H*2*pi*r \n",
- "print\"Current in the wire is \",I,\"amp\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current in the wire is 4*pi amp\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg5:pg-212"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy import *\n",
- "sigma=1e-4 #conductivity in siemen/m\n",
- "Er=2.25 #relative permittivity \n",
- "E0=1/(4*math.pi*9e9) #permittivity of free space\n",
- "E=5e-6*sin(Symbol('9e+09*t')) #electric field in the material volt/m\n",
- "J=sigma*E\n",
- "diff_E=5e-6*9e9*cos(Symbol('9e+09*t'))\n",
- "Jd=E0*Er*diff_E\n",
- "print\"Conduction current density is \",J,\"A/m**2\"\n",
- "print\"Displacement current density is \",Jd,\"A/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Conduction current density is 5.0e-10*sin(9e+09*t) A/m**2\n",
- "Displacement current density is 8.95246554891911e-7*cos(9e+09*t) A/m**2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg13:pg-236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "H0=1 #magnitude of field vector in amp/meter\n",
- "mu_0=4*round(math.pi,2)*1e-7 #permeability of free space in H/m\n",
- "e0=8.85e-12 #permittivity of free space in F/m\n",
- "E0=H0*sqrt(mu_0/e0)\n",
- "print\"Magnitude of electric field for plane wave in free space is \",round(E0,2),\"V/m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Magnitude of electric field for plane wave in free space is 376.72 V/m\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg14:pg-236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "E0=1e2 #maximum electric field in plane electromagnetic wave in Newton/coul.\n",
- "c=3e8 #speed of light in m/sec\n",
- "B0=E0/c \n",
- "print\"Maximum magnetic field is \",round(B0,9),\"Tesla\"\n",
- "print\"Maximum magnetic field will be in Z-direction.\"#this part is not printed in answer in book"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum magnetic field is 3.33e-07 Tesla\n",
- "Maximum magnetic field will be in Z-direction.\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg15:pg-236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "S=2*4.2e4/60 #energy flux per unit area per second at the earth surface\n",
- "mu_0=4*round(math.pi,2)*1e-7 #permeability of free space in H/m\n",
- "e0=8.85e-12 #permittivity of free space in F/m\n",
- "EH=S\n",
- "E_div_H=sqrt(mu_0/e0)\n",
- "E=sqrt(E_div_H*EH)\n",
- "H=EH/E\n",
- "E0=round(E,1)*round(sqrt(2.),3)\n",
- "H0=H*sqrt(2.)\n",
- "print\"Amplitude of electric field is \",round(E0,1),\"V/m\"\n",
- "print\"Amplitude of magnetic field is \",round(H0,3),\"A-turn m-1\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Amplitude of electric field is 1026.8 V/m\n",
- "Amplitude of magnetic field is 2.726 A-turn m-1\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg16:pg-236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "P0=1000 #power in watt\n",
- "r=2 #distance in meter\n",
- "Sav=P0/(4*round(math.pi,2)*r**2)\n",
- "mu_0=4*round(math.pi,2)*1e-7 #permeability of free space in H/m\n",
- "e0=8.85e-12 #permittivity of free space in F/m\n",
- "EH=Sav\n",
- "E_div_H=sqrt(mu_0/e0)\n",
- "E=sqrt(E_div_H*EH)\n",
- "H=EH/E\n",
- "print\"Average value of electric field intensity is \",round(E,2),\"V/m\"\n",
- "print\"Average value of magnetic field intensity is \",round(H,2),\"A-turn m-1\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Average value of electric field intensity is 86.59 V/m\n",
- "Average value of magnetic field intensity is 0.23 A-turn m-1\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg17:pg-237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "S=1.38 #energy flux in KW/m**2\n",
- "c=3e8 #speed of light in m/sec\n",
- "mu_0=4*math.pi*1e-7 #permeability of free space in H/m\n",
- "E0=sqrt(2*mu_0*c*S*1e3)\n",
- "B0=E0/c\n",
- "print\"Peak value of electric field is \",round(E0*1e-3,2),\"KV/m\"\n",
- "print\"Peak value of magnetic field is \",round(B0,7),\"Wb/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Peak value of electric field is 1.02 KV/m\n",
- "Peak value of magnetic field is 3.4e-06 Wb/m**2\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg18:pg-237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "E0=100 #in Newton/coul.\n",
- "A=1e-3 #area in m**2\n",
- "l=100 #length in cm\n",
- "e0=8.85e-12 #permittivity of free space in F/m\n",
- "V=A*l*1e-2\n",
- "U=e0*E0**2*V/2\n",
- "print\"Energy contained in cylinder is \",U,\"Joule\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Energy contained in cylinder is 4.425e-11 Joule\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg19:pg-238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "E0=0.05 #amplitude of electric field strength in V/m\n",
- "v=6 #frequency in MHz\n",
- "c=3e8 #speed of light in m/sec\n",
- "mu_0=4*math.pi*1e-7 #permeability of free space in H/m\n",
- "e0=8.85e-12 #permittivity of free space in F/m\n",
- "T=round(1/(v*1e6),9)\n",
- "lamda=c/(v*1e6)\n",
- "H0=E0/sqrt(mu_0/e0)\n",
- "Sx_av=E0*round(H0,6)/2\n",
- "print\"E=\",E0,\"sin(\",\"{:.2e}\".format(2*math.pi/T),\"t -\",(2*round(math.pi,2)/lamda),\"x) V/m\"\n",
- "print\"H=\",\"{:.2e}\".format(H0),\"sin(\",\"{:.2e}\".format(2*math.pi/T),\"t -\",(2*round(math.pi,2)/lamda),\"x) A/m\" \n",
- "print\"B=\",round(E0/c,12),\"sin(\",\"{:.2e}\".format(2*math.pi/T),\"t -\",(2*round(math.pi,2)/lamda),\"x) Wb/m**2\" \n",
- "print\"Average poynting vector S=\",Sx_av,\"Wb/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "E= 0.05 sin( 3.76e+07 t - 0.1256 x) V/m\n",
- "H= 1.33e-4 sin( 3.76e+07 t - 0.1256 x) A/m\n",
- "B= 1.67e-10 sin( 3.76e+07 t - 0.1256 x) Wb/m**2\n",
- "Average poynting vector S= 3.325e-06 Wb/m**2\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg20:pg-239"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "lamda=7 #wavelength in mm\n",
- "E0=42 #maximum magnitude of electric field in V/m\n",
- "c=3e8 #speed of light in m/sec\n",
- "print\"E=\",E0,\"sin(2*pi*(ct-x)/\",lamda,\") V/m\"\n",
- "print\"B=\",E0/c,\"sin(2*pi*(ct-x)/\",lamda,\") Wb/m**2 \\nThe magnetic field is along Z-axis.\"\n",
- "#unit is not mentioned in answer in book"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "E= 42 sin(2*pi*(ct-x)/ 7 ) V/m\n",
- "B= 1.4e-07 sin(2*pi*(ct-x)/ 7 ) Wb/m**2 \n",
- "The magnetic field is along Z-axis.\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg21:pg-239"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "er=81 #relative permittivity of distilled water\n",
- "e0=1 #let, permittivity of free space\n",
- "mu_0=1 #let, permeability of free space\n",
- "e=e0*er\n",
- "c=3e8 #speed of light in m/sec\n",
- "mu=mu_0#for distilled water\n",
- "MU=sqrt((mu*e)/(mu_0*e0))\n",
- "v=c/MU\n",
- "print\"Refractive index is \",MU\n",
- "print\"Velocity of light in distilled water is \",\"{:.2e}\".format(v),\"m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Refractive index is 9\n",
- "Velocity of light in distilled water is 3.33e+7 m/s\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg23:pg-241"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "E0=7.5 #electric field intensity in KV/m\n",
- "w=2e9 #angular frequency in rad/sec\n",
- "c=3e8 #speed of light in m/sec\n",
- "mu_0=4*round(math.pi,2)*1e-7 #permeability of free space in H/m\n",
- "e0=8.85e-12 #permittivity of free space in F/m\n",
- "f=w/(2*round(math.pi,2))\n",
- "lamda=c/f\n",
- "T=1/f\n",
- "H0=E0*1e3/sqrt(mu_0/e0)\n",
- "print\"Wavelength is \",lamda,\"m\"\n",
- "print\"Frequency is \",round(f*1e-6,1),\"MHz\"\n",
- "print\"Time period is \",T,\"sec\"\n",
- "print\"Amplitude of magnetic field intensity is \",round(H0,2),\"A/m\"\n",
- "print\"Therefore, Hz=\",round(H0,2),\"cos( (%.e*t)-(beta*x)) A/m\"%w#unit is not printed in book"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Wavelength is 0.942 m\n",
- "Frequency is 318.5 MHz\n",
- "Time period is 3.14e-09 sec\n",
- "Amplitude of magnetic field intensity is 19.91 A/m\n",
- "Therefore, Hz= 19.91 cos( (2e+09*t)-(beta*x)) A/m\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg24:pg-241"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from sympy import *\n",
- "mu_0=4*math.pi*1e-7 #permeability of free space in H/m\n",
- "e0=8.854e-12 #permittivity of free space in F/m\n",
- "E=array([0, 45*sin(Symbol('6*pi*1e8*t-(2*pi*x)')),15*cos(Symbol('6*pi*1e8*t-(2*pi*x)'))]) \n",
- "#E=Ey*sin((w*t)-(beta*x))j + Ez*cos((w*t)-(beta*x))k\n",
- "#compairing given equation with above equation\n",
- "beta=2*Symbol('pi')\n",
- "w=6e8*Symbol('pi')\n",
- "f=w/(2*Symbol('pi'))\n",
- "n0=sqrt(mu_0/e0)\n",
- "Hx=0\n",
- "Hy=round(15/n0,4)*cos(Symbol('6*pi*10**8*t-(2*pi*x)'))\n",
- "Hz=round(45/n0,3)*sin(Symbol('6*pi*10**8*t-(2*pi*x)'))\n",
- "H=array([ Hx , Hy , Hz ])\n",
- "print\"Phase constant is \",beta,\"rad/s\"\n",
- "print\"Angular frequency is %.e*pi rad/s\"%(w/Symbol('pi'))\n",
- "print\"Frequency is \",\"{:.0e}\".format(f),\"Hz\"\n",
- "print\"Intrinsic impedance is \",int(round(n0)),\"Ohm\"\n",
- "print\"Magnetic field is \",H,\"A/m\" #unit is not printed in book"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Phase constant is 2*pi rad/s\n",
- "Angular frequency is 6e+08*pi rad/s\n",
- "Frequency is 3e+8 Hz\n",
- "Intrinsic impedance is 377 Ohm\n",
- "Magnetic field is [0 0.0398*cos(6*pi*10**8*t-(2*pi*x)) 0.119*sin(6*pi*10**8*t-(2*pi*x))] A/m\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg25:pg-242"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from sympy import *\n",
- "x, Beta, y, Y = symbols('x Beta y Y')\n",
- "Hz=(6*x*cos(Beta))+(12*y*sin(Y))\n",
- "a=diff((6*x*cos(Beta))+(12*y*sin(Y)),y)\n",
- "b=diff(-((6*x*cos(Beta))+(12*y*sin(Y))),x)\n",
- "c=0\n",
- "J=array([ a, b, c])\n",
- "print\"Current density is \",J,\"A/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current density is [12*sin(Y) -6*cos(Beta) 0] A/m**2\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg26:pg-244"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "A=1.3 #area in m**2\n",
- "t=3 #time in hours\n",
- "S=1.1 #intensity of sun rays in KW/m**2\n",
- "c=3e8 #speed of light in m/sec\n",
- "p=A*(t*3600)*(S*1000)/c\n",
- "print\"Momentum is %se-4 Kg-m/s\"%(p*10000)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Momentum is 514.8e-4 Kg-m/s\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg27:pg-245"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "S=10 #energy flux in watt/m**2\n",
- "A=1 #area in m**2\n",
- "t=1 #time in hour\n",
- "c=3e8 #speed of light in m/sec\n",
- "p=2*S*A*(t*3600)/c\n",
- "F=2*S*A/c\n",
- "print\"Momentum is %.1e Kg-m/s\"%p\n",
- "print\"Force is %.2e N\"%F"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Momentum is 2.4e-04 Kg-m/s\n",
- "Force is 6.67e-08 N\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg29:pg-251"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "mu=4*math.pi*1e-7 #permeability in H/m\n",
- "f=71.6 #frequency in MHz\n",
- "sigma=3.54e7 #conductivity in siemens/m\n",
- "d=1/sqrt(math.pi*f*1e6*mu*sigma)\n",
- "print\"Depth of penetration is \",int(round(d*1e6)),\"micro meter\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Depth of penetration is 10 micro meter\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg30:pg-251"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "f=3e6 #frequency in Hz\n",
- "mu_r=1 \n",
- "mu_0=4*round(math.pi,2)*1e-7 # in H/m\n",
- "sigma=38e6 # in S/m\n",
- "mu=mu_r*mu_0\n",
- "d=1/sqrt(round(math.pi,2)*f*mu*sigma)\n",
- "alpha=1/(d)\n",
- "beta=alpha\n",
- "magnitude=sqrt(alpha**2+beta**2)\n",
- "angle=degrees(math.atan(beta/alpha))\n",
- "v=2*round(math.pi,2)*f/round(beta)\n",
- "print\"Skin depth is \",round(d*1e3,5),\"mm\"\n",
- "print\"Propagation constant =[ %.4e , %s degree] m**-1\"%(magnitude,int(angle)) #in polar form\n",
- "print\"Wave velocity is \",round(v,2),\"m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Skin depth is 0.04716 mm\n",
- "Propagation constant =[ 2.9987e+04 , 45 degree] m**-1\n",
- "Wave velocity is 888.51 m/s\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg31:pg-252"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "mu=4*math.pi*1e-7 # in H/m\n",
- "e0=8.854e-12 # in F/m\n",
- "e=70*e0\n",
- "sigma=5\n",
- "d=(2./sigma)*sqrt(e/mu)\n",
- "alpha=1/round(d,4)\n",
- "print\"skin depth is \",round(d,4),\"m\"\n",
- "print\"Attenuation constant is \",round(alpha,2),\"Np/m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "skin depth is 0.0089 m\n",
- "Attenuation constant is 112.36 Np/m\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg32:pg-253"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "sigma=2e-3 #in S/m\n",
- "e0=8.854e-12 #in F/m\n",
- "e=80*e0\n",
- "f=10 #in KHz\n",
- "mu=4*math.pi*1e-7 #in H/m\n",
- "ratio=sigma/(2*round(math.pi,2)*f*1e3*e)\n",
- "\n",
- "#since ratio= sigma/(w*e) = 44.96 >>1,therefore, medium is a good conductor.\n",
- "#So calculations will be done considering medium as a good conductor.\n",
- "\n",
- "alpha=sqrt(2*math.pi*f*1e3*mu*sigma/2)\n",
- "beta=int(alpha*1e5)*1e-5\n",
- "magnitude=sqrt(alpha**2+beta**2)\n",
- "angle=degrees(math.atan(beta/alpha))\n",
- "ni=round(round(sqrt(2*math.pi*f*1e3*mu/sigma),2)/round(sqrt(2),2),3)*(1+1j)\n",
- "lamda=2*round(math.pi,2)/beta\n",
- "v=2*math.pi*f*1e3/beta\n",
- "print\"Attenuation constant is %.2e neper/m\"%(int(alpha*1e5)*1e-5)\n",
- "print\"Phase constant is %.2e rad/m\"%beta\n",
- "print\"Propagation constant = [ %.3e , %.f degree] m**-1\"%(magnitude,angle)#in polar form(unit is not printed in book) \n",
- "print\"Intrinsic impedance is \",ni,\"ohm\"\n",
- "print\"Wavelength is %.2f m\"%lamda\n",
- "print\"Velocity of wave is %.2e m/s\"%v"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Attenuation constant is 8.88e-03 neper/m\n",
- "Phase constant is 8.88e-03 rad/m\n",
- "Propagation constant = [ 1.256e-02 , 45 degree] m**-1\n",
- "Intrinsic impedance is (4.454+4.454j) ohm\n",
- "Wavelength is 707.21 m\n",
- "Velocity of wave is 7.08e+06 m/s\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg33:pg-254"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "f=100 #in MHz\n",
- "mu_r=1\n",
- "mu_0=4*round(math.pi,2)*1e-7 #in H/m\n",
- "mu=mu_0*mu_r\n",
- "sigma=58e6 #in S/m\n",
- "alpha=sqrt(round(math.pi,2)*f*1e6*mu*sigma)\n",
- "alpha=int(alpha/10)*10\n",
- "beta=alpha\n",
- "magnitude=sqrt(alpha**2+beta**2)\n",
- "angle=degrees(math.atan(beta/alpha))\n",
- "sqrt_j=45\n",
- "ni=sqrt(2*round(math.pi,2)*f*1e6*mu/sigma)\n",
- "v=2*round(math.pi,2)*f*1e6/beta\n",
- "print\"Attenuation constant is %.4e neper/m\"%(int(alpha*1e5)*1e-5)\n",
- "print\"Phase constant is %.4e rad/m\"%beta\n",
- "print\"Propagation constant = [ %.4e , %.f degree] m**-1\"%(magnitude,angle)#in polar form(unit is not printed in book) \n",
- "print\"Intrinsic impedance = [ %.3e , %s degree ] ohm\"%(ni,sqrt_j)#in polar form(unit is not printed in book)\n",
- "print\"Velocity of wave is %.3f Km/s\"%(v/1e3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Attenuation constant is 1.5124e+05 neper/m\n",
- "Phase constant is 1.5124e+05 rad/m\n",
- "Propagation constant = [ 2.1389e+05 , 45 degree] m**-1\n",
- "Intrinsic impedance = [ 3.688e-03 , 45 degree ] ohm\n",
- "Velocity of wave is 4.152 Km/s\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eg34:pg-255"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "mu=4*math.pi*1e-7 #in H/m\n",
- "sigma=3.54e7 #in S/m\n",
- "d=0.0664 #penetration depth in mm\n",
- "f=1/(math.pi*mu*sigma*(d*1e-3)**2)\n",
- "print\"Frequency is %.2f MHz\"%(f/1e6)\n",
- "#answer is wrong in book because d=0.0644 is taken in calculation which is wrong(given d=0.0664 mm)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Frequency is 1.62 MHz\n"
- ]
- }
- ],
- "prompt_number": 40
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |