summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter_5.ipynb
diff options
context:
space:
mode:
authornice2014-09-16 17:48:17 +0530
committernice2014-09-16 17:48:17 +0530
commitb8bb8bbfa81499ad7fc3f3508be257da65f543af (patch)
tree204976d3209b79a52e8518c65fa27a4ca48f8489 /Engineering_Physics/Chapter_5.ipynb
parent2792e8d6ecab454e3cb8fb1ea1f26f1613bc1e1c (diff)
downloadPython-Textbook-Companions-b8bb8bbfa81499ad7fc3f3508be257da65f543af.tar.gz
Python-Textbook-Companions-b8bb8bbfa81499ad7fc3f3508be257da65f543af.tar.bz2
Python-Textbook-Companions-b8bb8bbfa81499ad7fc3f3508be257da65f543af.zip
updating repo
Diffstat (limited to 'Engineering_Physics/Chapter_5.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter_5.ipynb549
1 files changed, 0 insertions, 549 deletions
diff --git a/Engineering_Physics/Chapter_5.ipynb b/Engineering_Physics/Chapter_5.ipynb
deleted file mode 100755
index e9ebdd41..00000000
--- a/Engineering_Physics/Chapter_5.ipynb
+++ /dev/null
@@ -1,549 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 5: Fibre Optics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.1, Page 5.15"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import pi, sqrt, asin\n",
- "\n",
- "# Given \n",
- "mu1 = 1.52 # refractive index for core\n",
- "mu2 = 1.41 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "theta_c = asin(mu2 / mu1) * (180 / pi)\n",
- "NA = sqrt(mu1**2 - mu2**2)\n",
- "theta_0 = asin(NA) * (180 / pi)\n",
- "\n",
- "#Result\n",
- "print \"Critical angle = %.2f degree \\nNumerical aperture = %.3f\\nMaximum incidence angle = %.1f degree\"%(theta_c,NA,theta_0)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Critical angle = 68.07 degree \n",
- "Numerical aperture = 0.568\n",
- "Maximum incidence angle = 34.6 degree\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.2, Page 5.16"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import pi, sqrt, asin\n",
- "\n",
- "# Given \n",
- "mu1 = 1.6 # refractive index for core\n",
- "mu2 = 1.5 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)#calculation for numerical aperture\n",
- "theta_0 = asin(NA) * (180 / pi)#calculation for maximum incidence angle\n",
- "\n",
- "#Result\n",
- "print \"Numerical aperture = %.3f\\nMaximum incidence angle = %.2f degree\"%(NA,theta_0)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture = 0.557\n",
- "Maximum incidence angle = 33.83 degree\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.3, Page 5.16"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import pi, sqrt, asin\n",
- " \n",
- "# Given \n",
- "mu_0 = 1 # refractive index of air\n",
- "mu1 = 1.5 # refractive index for core\n",
- "mu2 = 1.48 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "theta_c = asin(mu2 / mu1) * (180 / pi)\n",
- "delta_mu = (mu1 - mu2) / mu1\n",
- "NA = sqrt(mu1**2 - mu2**2)\n",
- "theta_0 = asin(NA) * (180 / pi)\n",
- "\n",
- "#Result\n",
- "print \"Critical angle = %.2f degrees \\nNumerical aperture = %.3f \\nAcceptance angle = %.2f degrees\\nFractional refractive index = %.2f %%\"%(theta_c,NA,theta_0,delta_mu*100)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Critical angle = 80.63 degrees \n",
- "Numerical aperture = 0.244 \n",
- "Acceptance angle = 14.13 degrees\n",
- "Fractional refractive index = 1.33 %\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.4, Page 5.17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "# Given \n",
- "mu1 = 1.62 # refractive index for core\n",
- "mu2 = 1.52 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)\n",
- "theta_0 = asin(NA) * (180 / pi)\n",
- "\n",
- "#Results\n",
- "print \"Numerical aperture = %.2f \\nMaximum incidence angle = %.1f degrees\"%(NA,theta_0)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture = 0.56 \n",
- "Maximum incidence angle = 34.1 degrees\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5, Page 5.17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import sqrt\n",
- "\n",
- "# Given \n",
- "NA = 0.22 # numerical aperture\n",
- "delta_mu = 0.012 # fractional refractive index\n",
- "\n",
- "#Calculations\n",
- "mu1 = sqrt(NA**2 / (1 - (1 - delta_mu)**2))\n",
- "mu2 = (1 - delta_mu) * mu1\n",
- "\n",
- "#Result\n",
- "print \"Refractive index for core = %.3f\\nRefractive index for cladding = %.2f\"%(mu1,mu2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Refractive index for core = 1.424\n",
- "Refractive index for cladding = 1.41\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.6, Page 5.17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import pi, sqrt, asin, sin\n",
- "\n",
- "# Given \n",
- "d = 0.0064 # diameter of fiber in cm\n",
- "mu1 = 1.53 # refractive index for core\n",
- "mu2 = 1.39 # refractive index for clad\n",
- "L = 90 # length of fiber in cm\n",
- "mu_0 = 1 # refractive index of air\n",
- "\n",
- "#calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)\n",
- "theta_0 = asin(NA) * (180 / pi)\n",
- "N1 = L / (d * sqrt((mu1 / (mu_0 * sin(theta_0 * (pi / 180))))**2 - 1))\n",
- "N2 = L / (d * sqrt((mu1 / (mu_0 * sin(theta_0 * (pi / 360))))**2 - 1))\n",
- "\n",
- "#Result\n",
- "print \"Numerical aperture = %.2f\\nAcceptance angle = %.1f degrees \\nNumber of reflections at maximum incidence = %.f \\nNumber of reflections in second case = %.f \"%(NA,theta_0,N1,N2)\n",
- "#Incorrect answer in the textbook"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture = 0.64\n",
- "Acceptance angle = 39.7 degrees \n",
- "Number of reflections at maximum incidence = 6468 \n",
- "Number of reflections in second case = 3204 \n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.7, Page 5.18"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import pi\n",
- "\n",
- "# Given \n",
- "d = 0.05 # diameter of fiber in mm\n",
- "NA = 0.22 # numerical aperture\n",
- "l = 8.5e-4 # wavelength of light in mm\n",
- "\n",
- "#calculations\n",
- "Vn = (pi * d * NA) / l\n",
- "Mm = 0.5 * (Vn)**2\n",
- "\n",
- "#Result\n",
- "print \"The normalized frequency = %.2f\\nNumber of guided in the core = %d\"%(Vn,Mm)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The normalized frequency = 40.66\n",
- "Number of guided in the core = 826\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.8, Page 5.18"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import sqrt, pi\n",
- "\n",
- "# Given \n",
- "l = 1.25e-6 #wavelength of light in meter\n",
- "mu1 = 1.465 # refractive index for core\n",
- "mu2 = 1.460 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)\n",
- "k = (2.4 * l) / ( pi * NA)\n",
- "Mm = 0.5 * ((pi * 50e-6 * NA) / l)**2\n",
- "\n",
- "#Result\n",
- "print \"Diameter of core < %.1e meter,\\n number of modes = %d\"%(k,Mm)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Diameter of core < 7.9e-06 meter,\n",
- " number of modes = 115\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.9, Page 5.19"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import sqrt, pi\n",
- "\n",
- "# Given \n",
- "l = 0.85e-6 #wavelength of light in meter\n",
- "mu1 = 1.461 # refractive index for core\n",
- "mu2 = 1.456 # refractive index for clad\n",
- "d = 4e-5 # diameter of core in meter\n",
- "\n",
- "#Calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)\n",
- "Mm = 0.5 * ((pi * d * NA) / l)**2\n",
- "\n",
- "#Result\n",
- "print \"Numerical aperture = %.3f\\n Number of modes = %d \"%(NA,Mm)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture = 0.121\n",
- " Number of modes = 159 \n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.10, Page 5.19\n"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import sqrt, pi\n",
- "\n",
- "# Given\n",
- "mu1 = 3.6 # refractive index for core\n",
- "mu2 = 3.55 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)#calculation for numerical aperture\n",
- "Mm1 = 0.5 * (pi * 5 * NA)**2#calculation for no. of modes in first case\n",
- "Mm2 = 0.5 * (pi * 50 * NA)**2#calculation for no. of modes in second case\n",
- "\n",
- "#Result\n",
- "print \"Number of modes in first case = %d \\nNumber of modes in second case = %d\"%(Mm1,Mm2)\n",
- "#Incorrect answer in the textbook"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of modes in first case = 44 \n",
- "Number of modes in second case = 4410\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.11, Page 5.20"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import sqrt, pi\n",
- "\n",
- "# Given \n",
- "l = 1.25e-6 #wavelength of light in meter\n",
- "mu1 = 1.46 # refractive index for core\n",
- "mu2 = 1.457 # refractive index for cladding\n",
- "\n",
- "#Calculations\n",
- "NA = sqrt(mu1**2 - mu2**2)#calculation for numerical aperture\n",
- "k = (2.4 * l) / ( pi * NA)\n",
- "\n",
- "#Result\n",
- "print \"Maximum diameter of core = %.2f micro meter\"%(k*1e6)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum diameter of core = 10.21 micro meter\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.12, Page 5.20"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import log10\n",
- "\n",
- "# Given \n",
- "L = 0.1 # length of fiber in km\n",
- "p = 5e-6 # power of signal in watt\n",
- "p_ = 1e-6 # power of signal inside the fiber in watt\n",
- "\n",
- "#Calculation\n",
- "alpha = (10 * log10(p / p_)) / L#calculation for absorption coefficient\n",
- "\n",
- "#Result\n",
- "print \"Absorption coefficient = %d dB/km \"%alpha"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Absorption coefficient = 69 dB/km \n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.13, Page 5.20"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import exp\n",
- "\n",
- "# Given \n",
- "L = 3 # length of optical fiber in km\n",
- "l = 6 # losses in dB\n",
- "p = 5e-3 # input power in watt \n",
- "\n",
- "#calculations\n",
- "alpha = (l * 3) / L\n",
- "p_ = p / (exp((2.303 * alpha * L) / 10))\n",
- "\n",
- "#Result\n",
- "print \"Output power = %.3f mW \"%(p_*1e3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Output power = 0.079 mW \n"
- ]
- }
- ],
- "prompt_number": 19
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file