diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Engineering_Mechanics_by_Tayal_A.K./chapter24_5.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Engineering_Mechanics_by_Tayal_A.K./chapter24_5.ipynb')
-rwxr-xr-x | Engineering_Mechanics_by_Tayal_A.K./chapter24_5.ipynb | 349 |
1 files changed, 0 insertions, 349 deletions
diff --git a/Engineering_Mechanics_by_Tayal_A.K./chapter24_5.ipynb b/Engineering_Mechanics_by_Tayal_A.K./chapter24_5.ipynb deleted file mode 100755 index 9fcc267a..00000000 --- a/Engineering_Mechanics_by_Tayal_A.K./chapter24_5.ipynb +++ /dev/null @@ -1,349 +0,0 @@ -{
- "metadata": {
- "name": "chapter24.ipynb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 24: Mechanical Vibrations"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 24.24-1,Page No:596"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "f=0.1666666 # oscillations/second\n",
- "x=8 # cm # distance from the mean position\n",
- "pi=3.14\n",
- "\n",
- "# Calculations\n",
- "\n",
- "omega=2*pi*f\n",
- "\n",
- "# Amplitude is given by eq'n \n",
- "r=sqrt((25*x**2)/16) # cm\n",
- "\n",
- "# Maximum acceleration is given as,\n",
- "a_max=(pi/3)**2*10 # cm/s^2\n",
- "\n",
- "# Velocity when it is at a dist of 5 cm (assume s=5 cm) is given by\n",
- "s=5 # cm\n",
- "v=omega*(r**2-s**2)**0.5 # cm/s\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"(a) The amplitude of oscillation is \",round(r,2),\"cm\"\n",
- "print\"(b) The maximum acceleration is \",round(a_max,2),\"cm/s^2\"\n",
- "print\"(c) The velocity of the particle at 5 cm from mean position is \",round(v,2),\"cm/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) The amplitude of oscillation is 10.0 cm\n",
- "(b) The maximum acceleration is 10.96 cm/s^2\n",
- "(c) The velocity of the particle at 5 cm from mean position is 9.06 cm/s\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 24.24-2,Page No:597"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "x_1=0.1 # m # assume the distance of the particle from mean position as (x_1 & x_2)\n",
- "x_2=0.2# m \n",
- "\n",
- "# assume velocities as v_1 & v_2\n",
- "\n",
- "v_1=1.2 # m/s\n",
- "v_2=0.8 # m/s\n",
- "pi=3.14\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# The amplitude of oscillations is given by dividing eq'n 1 by 2 as,\n",
- "r=(0.064)**0.5 # m\n",
- "omega=v_1*((r**2-x_1**2)**0.5) # radians/second\n",
- "t=(2*pi)/omega # seconds\n",
- "v_max=r*omega # m/s\n",
- "\n",
- "# let the max acceleration be a which is given as,\n",
- "a=r*omega**2 # m/s^2\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"(a) The amplitude of oscillations is \",round(r,3),\"m\"\n",
- "print\"(b) The time period of oscillations is \",round(t,2),\"seconds\"\n",
- "print\"(c) The maximum velocity is \",round(v_max,2),\"m/s\"\n",
- "print\"(d) The maximum acceleration is \",round(a,2),\"m/s^2\"\n",
- "# NOTE: the value of t is incorrect in the text book\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) The amplitude of oscillations is 0.253 m\n",
- "(b) The time period of oscillations is 1.22 seconds\n",
- "(c) The maximum velocity is 1.31 m/s\n",
- "(d) The maximum acceleration is 6.75 m/s^2\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Exammple 24.24-5,Page No:"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variabes\n",
- "\n",
- "W=50 # N # weight\n",
- "x_0=0.075 # m # amplitude\n",
- "f=1 # oscillation/sec # frequency\n",
- "pi=3.14\n",
- "g=9.81 \n",
- "\n",
- "# Calculations\n",
- "\n",
- "omega=2*pi*f\n",
- "K=(((2*pi)**2*W)/g)*(10**-2) # N/cm\n",
- "\n",
- "# let the total extension of the string be delta which is given as,\n",
- "delta=(W/K)+(x_0*10**2) # cm\n",
- "T=K*delta # N # Max Tension\n",
- "v=omega*x_0 #m/s # max velocity\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"(a) The stiffness of the spring is \",round(K,2),\"N/cm\"\n",
- "print\"(b) The maximum Tension in the spring is \",round(T,2),\"N\"\n",
- "print\"(c) The maximum velocity is \",round(v,2),\"m/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) The stiffness of the spring is 2.01 N/cm\n",
- "(b) The maximum Tension in the spring is 65.08 N\n",
- "(c) The maximum velocity is 0.47 m/s\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 24.24-10,Page No:"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "l=1 # m # length of the simple pendulum\n",
- "g=9.81 # m/s^2\n",
- "pi=3.14\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# Let t_s be the time period when the elevator is stationary\n",
- "t_s=2*pi*(l/g)**0.5 #/ seconds\n",
- "\n",
- "# Let t_u be the time period when the elevator moves upwards. Then from eqn 1\n",
- "t_u=2*pi*((l)/(g+(g/10)))**0.5 # seconds\n",
- "\n",
- "# Let t_d be the time period when the elevator moves downwards.\n",
- "t_d=2*pi*(l/(g-(g/10)))**0.5 # seconds\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The time period of oscillation of the pendulum for upward acc of the elevator is \",round(t_u,2),\"seconds\"\n",
- "print\"The time period of oscillation of the pendulum for downward acc of the elevator is \",round(t_d,2),\"seconds\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The time period of oscillation of the pendulum for upward acc of the elevator is 1.91 seconds\n",
- "The time period of oscillation of the pendulum for downward acc of the elevator is 2.11 seconds\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 24.24-11,Page No:"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "t=1 # second # time period of the simple pendulum\n",
- "g=9.81 # m/s^2\n",
- "pi=3.14\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# Length of pendulum is given as,\n",
- "l=(t/(2*pi)**2)*g # m\n",
- "\n",
- "# Let t_u be the time period when the elevator moves upwards. Then the time period is given as,\n",
- "t_u=2*pi*((l)/(g+(g/10)))**0.5 # seconds\n",
- "\n",
- "# Let t_d be the time period when the elevator moves downwards.\n",
- "t_d=2*pi*(l/(g-(g/10)))**0.5 # seconds\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The time period of oscillation of the pendulum for upward acc of the elevator is \",round(t_u,2),\"seconds\"\n",
- "print\"The time period of oscillation of the pendulum for downward acc of the elevator is \",round(t_d,2),\"seconds\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The time period of oscillation of the pendulum for upward acc of the elevator is 0.95 seconds\n",
- "The time period of oscillation of the pendulum for downward acc of the elevator is 1.05 seconds\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 24.24-12,Page No:"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "m=15 # kg # mass of the disc\n",
- "D=0.3 # m # diameter of the disc\n",
- "R=0.15 # m # radius\n",
- "l=1 # m # length of the shaft\n",
- "d=0.01 # m # diameter of the shaft\n",
- "G=30*10**9 # N-m^2 # modulus of rigidity\n",
- "pi=3.14\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# M.I of the disc about the axis of rotation is given as,\n",
- "I=(m*R**2)*0.5 # kg-m^2\n",
- "\n",
- "# Stiffness of the shaft\n",
- "k_t=(pi*d**4*G)/(32*l) # N-m/radian\n",
- "t=2*pi*(I/k_t)**0.5 # seconds\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The time period of oscillations of the disc is \",round(t,2),\"seconds\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The time period of oscillations of the disc is 0.48 seconds\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 24
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |