diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Engineering_Mechanics_by_Tayal_A.K./chapter18_13.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Engineering_Mechanics_by_Tayal_A.K./chapter18_13.ipynb')
-rwxr-xr-x | Engineering_Mechanics_by_Tayal_A.K./chapter18_13.ipynb | 620 |
1 files changed, 0 insertions, 620 deletions
diff --git a/Engineering_Mechanics_by_Tayal_A.K./chapter18_13.ipynb b/Engineering_Mechanics_by_Tayal_A.K./chapter18_13.ipynb deleted file mode 100755 index 696a0479..00000000 --- a/Engineering_Mechanics_by_Tayal_A.K./chapter18_13.ipynb +++ /dev/null @@ -1,620 +0,0 @@ -{
- "metadata": {
- "name": "chapter18.ipynb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 18: Impact:Collision Of Elastic Bodies"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-1,Page No:474"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import numpy as np\n",
- "\n",
- "# Initilization of variables\n",
- "m_a=1 # kg # mass of the ball A\n",
- "v_a=2 # m/s # velocity of ball A\n",
- "m_b=2 # kg # mass of ball B\n",
- "v_b=0 # m/s # ball B at rest\n",
- "e=1/2 # coefficient of restitution\n",
- "\n",
- "# Calculations\n",
- "# Solving eqn's 1 & 2 using matrix for v'_a & v'_b,\n",
- "A=np.array([[1 ,2],[-1 ,1]])\n",
- "B=np.array([2,1])\n",
- "C=np.linalg.solve(A,B)\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The velocity of ball A after impact is \",round(C[0]),\"m/s\"\n",
- "print\"The velocity of ball B after impact is \",round(C[1]),\"m/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of ball A after impact is 0.0 m/s\n",
- "The velocity of ball B after impact is 1.0 m/s\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-2,Page No:480"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import numpy as np\n",
- "\n",
- "# Initilization of variables\n",
- "m_a=2 # kg # mass of ball A\n",
- "m_b=6 # kg # mass of ball B\n",
- "m_c=12 # kg # mass of ball C\n",
- "v_a=12 # m/s # velocity of ball A\n",
- "v_b=4 # m/s # velocity of ball B\n",
- "v_c=2 # m/s # velocity of ball C\n",
- "e=1 # coefficient of restitution for perfectly elastic body\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# (A)\n",
- "# Solving eq'n 1 & 2 using matrix for v'_a & v'_b,\n",
- "A=np.array([[2 ,6],[-1, 1]])\n",
- "B=np.array([48,8])\n",
- "C=np.linalg.solve(A,B)\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# (B)\n",
- "# Solving eq'ns 3 & 4 simultaneously using matrix for v'_b & v'_c\n",
- "P=np.array([[1 ,2],[-1, 1]])\n",
- "Q=np.array([12,6])\n",
- "R=np.linalg.solve(P,Q)\n",
- "\n",
- "# Results (A&B)\n",
- "\n",
- "print\"The velocity of ball A after impact on ball B is \",round(C[0]),\"m/s\" # here the ball of mass 2 kg is bought to rest\n",
- "print\"The velocity of ball B after getting impacted by ball A is \",round(C[1]),\"m/s\"\n",
- "print\"The final velocity of ball B is \",round(R[0]),\"m/s\" # here the ball of mass 6 kg is bought to rest\n",
- "print\"The velocity of ball C after getting impacted by ball B is \",round(R[1]),\"m/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of ball A after impact on ball B is 0.0 m/s\n",
- "The velocity of ball B after getting impacted by ball A is 8.0 m/s\n",
- "The final velocity of ball B is 0.0 m/s\n",
- "The velocity of ball C after getting impacted by ball B is 6.0 m/s\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-3,Page No:481"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "h_1=9 # m # height of first bounce\n",
- "h_2=6 # m # height of second bounce\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# From eq'n (5) we have, Coefficient of restitution between the glass and the floor is,\n",
- "e=(h_2*h_1**-1)**0.5\n",
- "# From eq'n 3 we get height of drop as,\n",
- "h=h_1/e**2 # m\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The ball was dropped from a height of \",round(h,1),\"m\"\n",
- "print\"The coefficient of restitution between the glass and the floor is \",round(e,1)\n",
- "# Here we use h`=h_1 & h``=h_2 because h` & h`` could not be defined in Scilab.\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The ball was dropped from a height of 13.5 m\n",
- "The coefficient of restitution between the glass and the floor is 0.8\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-4,Page No:484"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "e=0.90 # coefficient o restitution\n",
- "v_a=10 # m/s # velocity of ball A\n",
- "v_b=15 # m/s # velocity of ball B\n",
- "alpha_1=30 # degree # angle made by v_a with horizontal\n",
- "alpha_2=60 # degree # angle made by v_b with horizontal\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# The components of initial velocity of ball A:\n",
- "v_a_x=v_a*cos(alpha_1*(pi/180)) # m/s\n",
- "v_a_y=v_a*sin(alpha_1*(pi/180)) # m/s\n",
- "\n",
- "# The components of initial velocity of ball B:\n",
- "v_b_x=-v_b*cos(alpha_2*(pi/180)) # m/s\n",
- "v_b_y=v_b*sin(alpha_2*(pi/180)) # m/s\n",
- "\n",
- "# From eq'n 1 & 2 we get,\n",
- "v_ay=v_a_y # m/s # Here, v_ay=(v'_a)_y\n",
- "v_by=v_b_y # m/s # Here, v_by=(v'_b)_y\n",
- "\n",
- "# On adding eq'n 3 & 4 we get,\n",
- "v_bx=((v_a_x+v_b_x)+(-e*(v_b_x-v_a_x)))*0.5 # m/s # Here. v_bx=(v'_b)_x\n",
- "\n",
- "# On substuting the value of v'_b_x in eq'n 3 we get,\n",
- "v_ax=(v_a_x+v_b_x)-(v_bx) # m/s # here, v_ax=(v'_a)_x\n",
- "\n",
- "# Now the eq'n for resultant velocities of balls A & B after impact are,\n",
- "v_A=(v_ax**2+v_ay**2)**0.5 # m/s\n",
- "v_B=(v_bx**2+v_by**2)**0.5 # m/s\n",
- "\n",
- "# The direction of the ball after Impact is,\n",
- "theta_1=arctan(-(v_ay/v_ax))*(180/pi) # degree\n",
- "theta_2=arctan(v_by/v_bx)*(180/pi) # degree\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The velocity of ball A after impact is \",round(v_A,2),\"m/s\"\n",
- "print\"The velocity of ball B after impact is \",round(v_B,2),\"m/s\"\n",
- "print\"The direction of ball A after impact is \",round(theta_1,2),\"degree\"\n",
- "print\"The direction of ball B after impact is \",round(theta_2,2),\"degree\"\n",
- "# Her we use, (1) v'_a & v'_b as v_A & v_B.\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of ball A after impact is 8.35 m/s\n",
- "The velocity of ball B after impact is 15.18 m/s\n",
- "The direction of ball A after impact is 36.77 degree\n",
- "The direction of ball B after impact is 58.85 degree\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-5,Page No:485"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initiization of variables\n",
- "theta=30 # degrees # ange made by the ball against the wall\n",
- "e=0.50\n",
- "# Calculations\n",
- "# The notations have been changed\n",
- "# Resolving the velocity v as,\n",
- "v_x=cos(theta*(pi/180))\n",
- "v_y=sin(theta*(pi/180))\n",
- "V_y=v_y\n",
- "# from coefficient of restitution reation\n",
- "V_x=-e*v_x\n",
- "# Resultant velocity\n",
- "V=sqrt(V_x**2+V_y**2)\n",
- "theta=arctan(V_y*(-V_x)**-1)*(180/pi) # taking +ve value for V_x\n",
- "# NOTE: Here all the terms are multiplied with velocity i.e (v).\n",
- "# Results\n",
- "\n",
- "print\"The velocity of the ball is \",round(V,3),\"v\"\n",
- "print\"The direction of the ball is \",round(theta,1),\"degree\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of the ball is 0.661 v\n",
- "The direction of the ball is 49.1 degree\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-6,Page No:488"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import numpy as np\n",
- "\n",
- "# Initilization of variables\n",
- "e=0.8 # coefficient of restitution\n",
- "g=9.81 # m/s^2 # acc due to gravity\n",
- "\n",
- "# Calcuations\n",
- "\n",
- "# Squaring eqn's 1 &2 and Solving eqn's 1 & 2 using matrix for the value of h\n",
- "A=np.array([[-1 ,(2*g)],[-1 ,-(1.28*g)]])\n",
- "B=np.array([0.945**2,(-0.4*9.81)])\n",
- "C=np.linalg.solve(A,B) # m\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The height from which the ball A should be released is \",round(C[1],3),\"m\"\n",
- "# The answer given in the book i.e 0.104 is wrong.\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The height from which the ball A should be released is 0.15 m\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-7,Page No:490"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "theta_a=60 # degree # angle made by sphere A with the verticle\n",
- "e=1 # coefficient of restitution for elastic impact\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# theta_b is given by the eq'n cosd*theta_b=0.875, hence theta_b is,\n",
- "theta_b=arccos(0.875)*(180/pi) # degree\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The angle through which the sphere B will swing after the impact is \",round(theta_b,2),\"degree\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The angle through which the sphere B will swing after the impact is 28.96 degree\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-8,Page No:491"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "m_a=0.01 # kg # mass of bullet A\n",
- "v_a=100 # m/s # velocity of bullet A\n",
- "m_b=1 # kg # mass of the bob\n",
- "v_b=0 # m/s # velocity of the bob\n",
- "l=1 # m # length of the pendulum\n",
- "v_r=-20 # m/s # velocity at which the bullet rebounds the surface of the bob # here the notation for v'_a is shown by v_r\n",
- "v_e=20 # m/s # velocity at which the bullet escapes through the surface of the bob # here the notation for v_a is shown by v_e\n",
- "g=9.81 # m/s^2 # acc due to gravity\n",
- "\n",
- "# Calculations\n",
- "\n",
- "# Momentum of the bullet & the bob before impact is,\n",
- "M=(m_a*v_a)+(m_b*v_b) # kg.m/s......(eq'n 1)\n",
- "\n",
- "# The common velocity v_c ( we use v_c insted of v' for notation of common velocity) is given by equating eq'n 1 & eq'n 2 as,\n",
- "\n",
- "# (a) When the bullet gets embedded into the bob\n",
- "v_c=M/(m_a+m_b) # m/s\n",
- "# The height h to which the bob rises is given by eq'n 3 as,\n",
- "h_1=(0.5)*(v_c**2/g) # m\n",
- "# The angle (theta_1) by which the bob swings corresponding to the value of height h_1 is,\n",
- "theta_1=arccos((l-h_1)/l)*(180/pi) # degree\n",
- "\n",
- "# (b) When the bullet rebounds from the surface of the bob\n",
- "# The velocity of the bob after the rebound of the bullet from its surface is given by equating eq'n 1 & eq'n 4 as,\n",
- "v_bob_rebound=M-(m_a*v_r) # m/s # here v_bob_rebound=v'_b\n",
- "# The equation for the height which the bob attains after impact is,\n",
- "h_2=(v_bob_rebound**2)/(2*g) # m\n",
- "# The corresponding angle of swing \n",
- "theta_2=arccos((l-h_2)/l)*(180/pi) # degree\n",
- "\n",
- "# (c) When the bullet pierces and escapes through the bob\n",
- "# From eq'n 1 & 5 the velocity attained by the bob after impact is given as,\n",
- "v_b_escape=M-(m_a*v_e) # m/s # here we use, v_b_escape insted of v'_b\n",
- "# The equation for the height which the bob attains after impact is,\n",
- "h_3=(v_b_escape**2)/(2*g) # m\n",
- "# The corresponding angle of swing \n",
- "theta_3=arccos((l-h_3)/(l))*(180/pi) # degree\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"(a) The maximum angle through which the pendulum swings when the bullet gets embeded into the bob is \",round(theta_1,1),\"degree\"\n",
- "print\"(b) The maximum angle through which the pendulum swings when the bullet rebounds from the surface of the bob is \",round(theta_2,2),\"degree\"\n",
- "print\"(c) The maximum angle through which the pendulum swings when the bullet escapes from other end of the bob the bob is \",round(theta_3,1),\"degree\"\n",
- "# IN THIS SUM WE HAVE USED DIFFERENT NOTATIONS CONSIDERING DIFFERENT CASES BECAUSE IN THE TEXT BOOK WE HAD 3 VARIABLES WITH SAME NOTATION BUT WITH A DIFFERENT VALUE WHICH COULD NOT BE EXECUTED INTO SCILAB.\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) The maximum angle through which the pendulum swings when the bullet gets embeded into the bob is 18.2 degree\n",
- "(b) The maximum angle through which the pendulum swings when the bullet rebounds from the surface of the bob is 22.09 degree\n",
- "(c) The maximum angle through which the pendulum swings when the bullet escapes from other end of the bob the bob is 14.7 degree\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-9,Page No:493"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "W_a=50 # N # falling weight\n",
- "W_b=50 # N # weight on which W_a falls\n",
- "g=9.81 # m/s^2 # acc due to gravity\n",
- "m_a=W_a/g # kg # mass of W_a\n",
- "m_b=W_b/g # kg # mass of W_b\n",
- "k=2*10**3 # N/m # stiffness of spring\n",
- "h=0.075 # m # height through which W_a falls\n",
- "\n",
- "#Calculations\n",
- "\n",
- "# The velocity of weight W_a just before the impact and after falling from a height of h is given from the eq'n, ( Principle of conservation of energy)\n",
- "v_a=(2*g*h)**0.5 # m/s\n",
- "\n",
- "# Let the mutual velocity after the impact be v_m (i.e v_m=v'), (by principle of conservation of momentum)\n",
- "v_m=(m_a*v_a)/(m_a+m_b) # m/s\n",
- "\n",
- "# Initial compression of the spring due to weight W_b is given by,\n",
- "delta_st=(W_b/k)*(10**2) # cm\n",
- "\n",
- "# Let the total compression of the spring be delta_t, Then delta_t is found by finding the roots from the eq'n........ delta_t^2-0.1*delta_t-0.000003=0. In this eq'n let,\n",
- "a=1\n",
- "b=-0.1\n",
- "c=-0.000003\n",
- "delta_t=((-b+((b**2-(4*a*c))**0.5))/2*a)*(10**2) # cm # we consider the -ve value\n",
- "delta=delta_t-delta_st # cm\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The compression of the spring over and above caused by the static action of weight W_a is \",round(delta),\"cm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The compression of the spring over and above caused by the static action of weight W_a is 10.0 cm\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-10,Page No:494"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "v_a=600 # m/s # velocity of the bullet before impact\n",
- "v_b=0 # m/s # velocity of the block before impact\n",
- "w_b=0.25 # N # weight of the bullet\n",
- "w_wb=50 # N # weight of wodden block\n",
- "mu=0.5 # coefficient of friction between the floor and the block\n",
- "g=9.81 # m/s^2 # acc due to gravity\n",
- "\n",
- "# Calculations\n",
- "\n",
- "m_a=w_b/g # kg # mass of the bullet\n",
- "m_b=w_wb/g # kg # mass of the block\n",
- "\n",
- "# Let the common velocity be v_c which is given by eq'n (Principle of conservation of momentum)\n",
- "v_c=(w_b*v_a)/(w_wb+w_b) # m/s\n",
- "\n",
- "# Let the distance through which the block is displaced be s, Then s is given by eq'n\n",
- "s=v_c**2/(2*g*mu) # m\n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The distance through which the block is displaced from its initial position is \",round(s,2),\"m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The distance through which the block is displaced from its initial position is 0.91 m\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 18.18-11,Page No:495"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "# Initilization of variables\n",
- "\n",
- "M=750 # kg # mass of hammer\n",
- "m=200 # kg # mass of the pile\n",
- "h=1.2 # m # height of fall of the hammer\n",
- "delta=0.1 # m # distance upto which the pile is driven into the ground\n",
- "g=9.81 # m/s^2 # acc due to gravity\n",
- "\n",
- "# Caculations\n",
- "\n",
- "# The resistance to penetration to the pile is given by eq'n,\n",
- "R=(((M+m)*g)+((M**2*g*h)/((M+m)*delta)))*(10**-3) # kN \n",
- "\n",
- "# Results\n",
- "\n",
- "print\"The resistance to penetration to the pile is \",round(R),\"KN\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The resistance to penetration to the pile is 79.0 KN\n"
- ]
- }
- ],
- "prompt_number": 29
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |