diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb')
-rwxr-xr-x | Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb | 365 |
1 files changed, 0 insertions, 365 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb deleted file mode 100755 index fa065c44..00000000 --- a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb +++ /dev/null @@ -1,365 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 2 - Systems" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1: pg 39" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 2.1\n", - "The Change in total energy is, del_E (kJ) = 1100\n", - "Since del_E is positive, so there is an increase in total energy\n", - "There is mistake in the book's results unit\n" - ] - } - ], - "source": [ - "print 'Example 2.1'\n", - "#calculate the Change in total energy\n", - "\n", - "# Given values\n", - "Q = 2500; # Heat transferred into the system, [kJ]\n", - "W = 1400; # Work transferred from the system, [kJ]\n", - "\n", - "# solution\n", - "\n", - "# since process carried out on a closed system, so using equation [4]\n", - "del_E = Q-W; # Change in total energy, [kJ]\n", - "\n", - "# results\n", - "\n", - "print 'The Change in total energy is, del_E (kJ) = ',del_E\n", - "\n", - "if del_E >= 0:\n", - " print 'Since del_E is positive, so there is an increase in total energy'\n", - "else:\n", - " print 'Since del_E is negative, so there is an decrease in total energy'\n", - "\n", - "\n", - "print \"There is mistake in the book's results unit\"\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 2: pg 39" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 2.2\n", - "The Heat transfer is, Q (kJ) = -700.0\n", - "Since Q < 0, so heat is transferred from the system\n" - ] - } - ], - "source": [ - "print 'Example 2.2'\n", - "#calculate the heat transfer\n", - "\n", - "# Given values\n", - "del_E = 3500.; # Increase in total energy of the system, [kJ]\n", - "W = -4200.; # Work transfer into the system, [kJ]\n", - "\n", - "# solution\n", - "# since process carried out on a closed system, so using equation [3]\n", - "Q = del_E+W;# [kJ]\n", - "\n", - "# results\n", - "print 'The Heat transfer is, Q (kJ) = ',Q\n", - "\n", - "if Q >=0:\n", - " print 'Since Q > 0, so heat is transferred into the system'\n", - "else:\n", - " print 'Since Q < 0, so heat is transferred from the system'\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 3: pg 40" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 2.3\n", - "The Work done is, W (kJ/kg) = 250\n", - "Since W > 0, so Work done by the engine per kilogram of working substance\n" - ] - } - ], - "source": [ - "print 'Example 2.3'\n", - "#calculate the Work done\n", - "\n", - "\n", - "# Given values\n", - "Q = -150; # Heat transferred out of the system, [kJ/kg]\n", - "del_u = -400; # Internal energy decreased ,[kJ/kg]\n", - "\n", - "# solution\n", - "# using equation [3],the non flow energy equation\n", - "# Q=del_u+W\n", - "W = Q-del_u; # [kJ/kg]\n", - "\n", - "# results\n", - "print 'The Work done is, W (kJ/kg) = ',W\n", - "\n", - "if W >=0:\n", - " print 'Since W > 0, so Work done by the engine per kilogram of working substance'\n", - "else:\n", - " print 'Since W < 0, so Work done on the engine per kilogram of working substance'\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 4: pg 44" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 2.4\n", - "workdone is, W (kJ/kg) = 550.6875\n", - "Since W>0, so Power is output from the system\n", - "The power output from the system is (kW) = 2202.75\n" - ] - } - ], - "source": [ - "print 'Example 2.4'\n", - "#calculate the power output and workdone\n", - "# Given values\n", - "m_dot = 4.; # fluid flow rate, [kg/s]\n", - "Q = -40.; # Heat loss to the surrounding, [kJ/kg]\n", - "\n", - "# At inlet \n", - "P1 = 600.; # pressure ,[kn/m**2]\n", - "C1 = 220.; # velocity ,[m/s]\n", - "u1 = 2200.; # internal energy, [kJ/kg]\n", - "v1 = .42; # specific volume, [m**3/kg]\n", - "\n", - "# At outlet\n", - "P2 = 150.; # pressure, [kN/m**2]\n", - "C2 = 145.; # velocity, [m/s]\n", - "u2 = 1650.; # internal energy, [kJ/kg]\n", - "v2 = 1.5; # specific volume, [m**3/kg]\n", - "\n", - "# solution\n", - "# for steady flow energy equation for the open system is given by\n", - "# u1+P1*v1+C1**2/2+Q=u2+P2*v2+C2**2/2+W\n", - "# hence\n", - "\n", - "W = (u1-u2)+(P1*v1-P2*v2)+(C1**2/2-C2**2/2)*10**-3+Q; # [kJ/kg]\n", - "\n", - "P_out = W*m_dot; # power out put from the system, [kW]\n", - "\n", - "# results\n", - "print 'workdone is, W (kJ/kg) = ',W\n", - "\n", - "if W >= 0:\n", - " print 'Since W>0, so Power is output from the system'\n", - "else:\n", - " print 'Since W<0, so Power is input to the system'\n", - "\n", - "# Hence\n", - "\n", - "print 'The power output from the system is (kW) = ',P_out\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5: pg 45" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 2.5\n", - "The temperature rise of the lead is (C) = 104.6\n" - ] - } - ], - "source": [ - "print 'Example 2.5'\n", - "#calculate the temperature rise\n", - "\n", - "\n", - "# Given values\n", - "del_P = 154.45; # pressure difference across the die, [MN/m**2]\n", - "rho = 11360.; # Density of the lead, [kg/m**3]\n", - "c = 130; # specific heat capacity of the lead, [J/kg*K]\n", - "\n", - "# solution\n", - "# since there is no cooling and no externel work is done, so energy balane becomes\n", - "# P1*V1+U1=P2*V2+U2 ,so\n", - "# del_U=U2-U1=P1*V1-P2*V2\n", - "\n", - "# also, for temperature rise, del_U=m*c*t, where, m is mass; c is specific heat capacity; and t is temperature rise\n", - "\n", - "# Also given that lead is incompressible, so V1=V2=V and assuming one m**3 of lead\n", - "\n", - "# using above equations\n", - "t = del_P/(rho*c)*10**6 ;# temperature rise [C]\n", - "\n", - "# results \n", - "print 'The temperature rise of the lead is (C) = ',round(t,1)\n", - "\n", - "# End\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 6: pg 46" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 2.6\n", - "(a) The inlet area is, A1 (m^2) = 0.0425\n", - "(b) The exit velocity is, C2 (m/s) = 171.71\n", - "(c) The power developed by the turbine system is (kW) = 671.88\n" - ] - } - ], - "source": [ - "print 'Example 2.6'\n", - "#calculate the power developed, exit velocity and inlet area\n", - "\n", - "# Given values\n", - "m_dot = 4.5; # mass flow rate of air, [kg/s]\n", - "Q = -40.; # Heat transfer loss, [kJ/kg]\n", - "del_h = -200.; # specific enthalpy reduce, [kJ/kg]\n", - "\n", - "C1 = 90; # inlet velocity, [m/s]\n", - "v1 = .85; # inlet specific volume, [m**3/kg]\n", - "\n", - "v2 = 1.45; # exit specific volume, [m**3/kg]\n", - "A2 = .038; # exit area of turbine, [m**2]\n", - "\n", - "# solution\n", - "\n", - "# part (a)\n", - "# At inlet, by equation[4], m_dot=A1*C1/v1\n", - "A1 = m_dot*v1/C1;#inlet area, [m**2]\n", - "print '(a) The inlet area is, A1 (m^2) = ',A1\n", - "\n", - "# part (b), \n", - "# At outlet, since mass flow rate is same, so m_dot=A2*C2/v2, hence\n", - "C2 = m_dot*v2/A2; # Exit velocity,[m/s]\n", - "print '(b) The exit velocity is, C2 (m/s) = ',round(C2,2)\n", - "\n", - "# part (c)\n", - "# using steady flow equation, h1+C1**2/2+Q=h2+C2**2/2+W\n", - "W = -del_h+(C1**2/2-C2**2/2)*10**-3+Q; # [kJ/kg]\n", - "\n", - "# Hence power developed is\n", - "P = W*m_dot;# [kW]\n", - "print '(c) The power developed by the turbine system is (kW) = ',round(P,2)\n", - "\n", - "# End\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |