summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb')
-rwxr-xr-xBasic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb365
1 files changed, 0 insertions, 365 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb
deleted file mode 100755
index fa065c44..00000000
--- a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter2.ipynb
+++ /dev/null
@@ -1,365 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 2 - Systems"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1: pg 39"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example 2.1\n",
- "The Change in total energy is, del_E (kJ) = 1100\n",
- "Since del_E is positive, so there is an increase in total energy\n",
- "There is mistake in the book's results unit\n"
- ]
- }
- ],
- "source": [
- "print 'Example 2.1'\n",
- "#calculate the Change in total energy\n",
- "\n",
- "# Given values\n",
- "Q = 2500; # Heat transferred into the system, [kJ]\n",
- "W = 1400; # Work transferred from the system, [kJ]\n",
- "\n",
- "# solution\n",
- "\n",
- "# since process carried out on a closed system, so using equation [4]\n",
- "del_E = Q-W; # Change in total energy, [kJ]\n",
- "\n",
- "# results\n",
- "\n",
- "print 'The Change in total energy is, del_E (kJ) = ',del_E\n",
- "\n",
- "if del_E >= 0:\n",
- " print 'Since del_E is positive, so there is an increase in total energy'\n",
- "else:\n",
- " print 'Since del_E is negative, so there is an decrease in total energy'\n",
- "\n",
- "\n",
- "print \"There is mistake in the book's results unit\"\n",
- "\n",
- "# End\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 2: pg 39"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example 2.2\n",
- "The Heat transfer is, Q (kJ) = -700.0\n",
- "Since Q < 0, so heat is transferred from the system\n"
- ]
- }
- ],
- "source": [
- "print 'Example 2.2'\n",
- "#calculate the heat transfer\n",
- "\n",
- "# Given values\n",
- "del_E = 3500.; # Increase in total energy of the system, [kJ]\n",
- "W = -4200.; # Work transfer into the system, [kJ]\n",
- "\n",
- "# solution\n",
- "# since process carried out on a closed system, so using equation [3]\n",
- "Q = del_E+W;# [kJ]\n",
- "\n",
- "# results\n",
- "print 'The Heat transfer is, Q (kJ) = ',Q\n",
- "\n",
- "if Q >=0:\n",
- " print 'Since Q > 0, so heat is transferred into the system'\n",
- "else:\n",
- " print 'Since Q < 0, so heat is transferred from the system'\n",
- "\n",
- "# End\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 3: pg 40"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example 2.3\n",
- "The Work done is, W (kJ/kg) = 250\n",
- "Since W > 0, so Work done by the engine per kilogram of working substance\n"
- ]
- }
- ],
- "source": [
- "print 'Example 2.3'\n",
- "#calculate the Work done\n",
- "\n",
- "\n",
- "# Given values\n",
- "Q = -150; # Heat transferred out of the system, [kJ/kg]\n",
- "del_u = -400; # Internal energy decreased ,[kJ/kg]\n",
- "\n",
- "# solution\n",
- "# using equation [3],the non flow energy equation\n",
- "# Q=del_u+W\n",
- "W = Q-del_u; # [kJ/kg]\n",
- "\n",
- "# results\n",
- "print 'The Work done is, W (kJ/kg) = ',W\n",
- "\n",
- "if W >=0:\n",
- " print 'Since W > 0, so Work done by the engine per kilogram of working substance'\n",
- "else:\n",
- " print 'Since W < 0, so Work done on the engine per kilogram of working substance'\n",
- "\n",
- "# End\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 4: pg 44"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example 2.4\n",
- "workdone is, W (kJ/kg) = 550.6875\n",
- "Since W>0, so Power is output from the system\n",
- "The power output from the system is (kW) = 2202.75\n"
- ]
- }
- ],
- "source": [
- "print 'Example 2.4'\n",
- "#calculate the power output and workdone\n",
- "# Given values\n",
- "m_dot = 4.; # fluid flow rate, [kg/s]\n",
- "Q = -40.; # Heat loss to the surrounding, [kJ/kg]\n",
- "\n",
- "# At inlet \n",
- "P1 = 600.; # pressure ,[kn/m**2]\n",
- "C1 = 220.; # velocity ,[m/s]\n",
- "u1 = 2200.; # internal energy, [kJ/kg]\n",
- "v1 = .42; # specific volume, [m**3/kg]\n",
- "\n",
- "# At outlet\n",
- "P2 = 150.; # pressure, [kN/m**2]\n",
- "C2 = 145.; # velocity, [m/s]\n",
- "u2 = 1650.; # internal energy, [kJ/kg]\n",
- "v2 = 1.5; # specific volume, [m**3/kg]\n",
- "\n",
- "# solution\n",
- "# for steady flow energy equation for the open system is given by\n",
- "# u1+P1*v1+C1**2/2+Q=u2+P2*v2+C2**2/2+W\n",
- "# hence\n",
- "\n",
- "W = (u1-u2)+(P1*v1-P2*v2)+(C1**2/2-C2**2/2)*10**-3+Q; # [kJ/kg]\n",
- "\n",
- "P_out = W*m_dot; # power out put from the system, [kW]\n",
- "\n",
- "# results\n",
- "print 'workdone is, W (kJ/kg) = ',W\n",
- "\n",
- "if W >= 0:\n",
- " print 'Since W>0, so Power is output from the system'\n",
- "else:\n",
- " print 'Since W<0, so Power is input to the system'\n",
- "\n",
- "# Hence\n",
- "\n",
- "print 'The power output from the system is (kW) = ',P_out\n",
- "\n",
- "# End\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 5: pg 45"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example 2.5\n",
- "The temperature rise of the lead is (C) = 104.6\n"
- ]
- }
- ],
- "source": [
- "print 'Example 2.5'\n",
- "#calculate the temperature rise\n",
- "\n",
- "\n",
- "# Given values\n",
- "del_P = 154.45; # pressure difference across the die, [MN/m**2]\n",
- "rho = 11360.; # Density of the lead, [kg/m**3]\n",
- "c = 130; # specific heat capacity of the lead, [J/kg*K]\n",
- "\n",
- "# solution\n",
- "# since there is no cooling and no externel work is done, so energy balane becomes\n",
- "# P1*V1+U1=P2*V2+U2 ,so\n",
- "# del_U=U2-U1=P1*V1-P2*V2\n",
- "\n",
- "# also, for temperature rise, del_U=m*c*t, where, m is mass; c is specific heat capacity; and t is temperature rise\n",
- "\n",
- "# Also given that lead is incompressible, so V1=V2=V and assuming one m**3 of lead\n",
- "\n",
- "# using above equations\n",
- "t = del_P/(rho*c)*10**6 ;# temperature rise [C]\n",
- "\n",
- "# results \n",
- "print 'The temperature rise of the lead is (C) = ',round(t,1)\n",
- "\n",
- "# End\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 6: pg 46"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example 2.6\n",
- "(a) The inlet area is, A1 (m^2) = 0.0425\n",
- "(b) The exit velocity is, C2 (m/s) = 171.71\n",
- "(c) The power developed by the turbine system is (kW) = 671.88\n"
- ]
- }
- ],
- "source": [
- "print 'Example 2.6'\n",
- "#calculate the power developed, exit velocity and inlet area\n",
- "\n",
- "# Given values\n",
- "m_dot = 4.5; # mass flow rate of air, [kg/s]\n",
- "Q = -40.; # Heat transfer loss, [kJ/kg]\n",
- "del_h = -200.; # specific enthalpy reduce, [kJ/kg]\n",
- "\n",
- "C1 = 90; # inlet velocity, [m/s]\n",
- "v1 = .85; # inlet specific volume, [m**3/kg]\n",
- "\n",
- "v2 = 1.45; # exit specific volume, [m**3/kg]\n",
- "A2 = .038; # exit area of turbine, [m**2]\n",
- "\n",
- "# solution\n",
- "\n",
- "# part (a)\n",
- "# At inlet, by equation[4], m_dot=A1*C1/v1\n",
- "A1 = m_dot*v1/C1;#inlet area, [m**2]\n",
- "print '(a) The inlet area is, A1 (m^2) = ',A1\n",
- "\n",
- "# part (b), \n",
- "# At outlet, since mass flow rate is same, so m_dot=A2*C2/v2, hence\n",
- "C2 = m_dot*v2/A2; # Exit velocity,[m/s]\n",
- "print '(b) The exit velocity is, C2 (m/s) = ',round(C2,2)\n",
- "\n",
- "# part (c)\n",
- "# using steady flow equation, h1+C1**2/2+Q=h2+C2**2/2+W\n",
- "W = -del_h+(C1**2/2-C2**2/2)*10**-3+Q; # [kJ/kg]\n",
- "\n",
- "# Hence power developed is\n",
- "P = W*m_dot;# [kW]\n",
- "print '(c) The power developed by the turbine system is (kW) = ',round(P,2)\n",
- "\n",
- "# End\n",
- "\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}