diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Applied_Physics_by_P_K_Mittal/Chapter_12_Fibre.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Applied_Physics_by_P_K_Mittal/Chapter_12_Fibre.ipynb')
-rwxr-xr-x | Applied_Physics_by_P_K_Mittal/Chapter_12_Fibre.ipynb | 365 |
1 files changed, 365 insertions, 0 deletions
diff --git a/Applied_Physics_by_P_K_Mittal/Chapter_12_Fibre.ipynb b/Applied_Physics_by_P_K_Mittal/Chapter_12_Fibre.ipynb new file mode 100755 index 00000000..f573b0a2 --- /dev/null +++ b/Applied_Physics_by_P_K_Mittal/Chapter_12_Fibre.ipynb @@ -0,0 +1,365 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:dac7a0b06f622e783ea6c469bf1c100c0c8157cc5e77bffea65e378f258808b2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12:Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1 , Page no:360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "u1=1.563; #refractive index of core\n",
+ "u2=1.498; #refractive index of cladding\n",
+ "\n",
+ "#calculate\n",
+ "d=(u1-u2)/u1; #calculation of fractional index change\n",
+ "\n",
+ "#result\n",
+ "print\"The fractional index change for a given optical fibre is =\",round(d,4);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fractional index change for a given optical fibre is = 0.0416\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 , Page no:360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "u1=1.55; #refractive index of core\n",
+ "u2=1.50; #refractive index of cladding\n",
+ "\n",
+ "#calculate\n",
+ "d=(u1-u2)/u1; #calculation of fractional index change\n",
+ "NA=u1*math.sqrt(2*d); #calculation of numerical aperture\n",
+ "theta=math.asin(NA); #calculation of acceptance angle\n",
+ "theta1=theta*180/3.14;\n",
+ "\n",
+ "#result\n",
+ "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n",
+ "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical aperture of the fibre is NA= 0.394\n",
+ "The acceptance angle of the optical fibre is = 23.2 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3 , Page no:360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "u1=1.563; #refractive index of core\n",
+ "u2=1.498; #refractive index of cladding\n",
+ "\n",
+ "#calculate\n",
+ "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n",
+ "theta=math.asin(NA); #calculation of acceptance angle\n",
+ "theta1=theta*180/3.14;\n",
+ "#result\n",
+ "print\"The numerical aperture of the fibre is NA=\",round(NA,4);\n",
+ "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical aperture of the fibre is NA= 0.4461\n",
+ "The acceptance angle of the optical fibre is = 26.5 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4 , Page no:360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "NA=0.39; #numerical aperture of the optical fibre\n",
+ "d=0.05; #difference in the refractive index of the material of the core and cladding\n",
+ "\n",
+ "#calculate\n",
+ "#since NA=u1*sqrt(2*d)\n",
+ "#we have u1=NA/sqrt(2*d)\n",
+ "u1= NA/math.sqrt(2*d); #calculation of refractive index of material of the core\n",
+ "\n",
+ "#result\n",
+ "print\"The refractive index of material of the core is u1=\",round(u1,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of material of the core is u1= 1.233\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5 , Page no:361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "u1=1.50; #refractive index of core\n",
+ "u2=1.45; #refractive index of cladding\n",
+ "\n",
+ "#calculate\n",
+ "d=(u1-u2)/u1; #calculation of fractional index change\n",
+ "NA=u1*math.sqrt(2*d); #calculation of numerical aperture\n",
+ "theta_0=math.asin(NA); #calculation of acceptance angle\n",
+ "theta_01=theta_0*180/3.14;\n",
+ "theta_c=math.asin(u2/u1); #calculation of critical angle\n",
+ "theta_c1=theta_c*180/3.14;\n",
+ "\n",
+ "#result\n",
+ "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n",
+ "print\"The acceptance angle of the optical fibre is =\",round(theta_01,2),\"degree\";\n",
+ "print\"The critical angle of the optical fibre is =\",round(theta_c1,2),\"degree\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical aperture of the fibre is NA= 0.387\n",
+ "The acceptance angle of the optical fibre is = 22.8 degree\n",
+ "The critical angle of the optical fibre is = 75.2 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6 , Page no:361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "NA=0.33; #numerical aperture\n",
+ "d=0.02; #difference in the refractive index of the core and cladding of the material\n",
+ "\n",
+ "#calculate\n",
+ "#since NA=u1*sqrt(2*d)\n",
+ "#therefore we have\n",
+ "u1=NA/math.sqrt(2*d); #calculation of refractive index of the core\n",
+ "#since d=(u1-u2)/u2\n",
+ "#therefore we have\n",
+ "u2=(1-d)*u1; #calculation of refractive index of the cladding\n",
+ "\n",
+ "#result\n",
+ "print\"The refractive index of the core is u1=\",round(u1,2);\n",
+ "print\"The refractive index of the cladding is u2=\",round(u2,3);\n",
+ "print \"NOTE: The answer in the textbook is wrong\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of the core is u1= 1.65\n",
+ "The refractive index of the cladding is u2= 1.617\n",
+ "NOTE: The answer in the textbook is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.7 , Page no:361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "u1=3.5; #refractive index of core\n",
+ "u2=3.45; #refractive index of cladding\n",
+ "u0=1; #refractive index of the air\n",
+ "\n",
+ "#calculate\n",
+ "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n",
+ "NA1=NA/u0;\n",
+ "alpha=math.asin(NA); #calculation of acceptance angle\n",
+ "alpha1=alpha*180/3.14;\n",
+ "#result\n",
+ "print\"The numerical aperture of the fibre is NA=\",round(NA1,2);\n",
+ "print\"The acceptance angle of the optical fibre is =\",round(alpha1,2),\"degree\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical aperture of the fibre is NA= 0.59\n",
+ "The acceptance angle of the optical fibre is = 36.14 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.8 , Page no:361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "u1=1.48; #refractive index of core\n",
+ "u2=1.45; #refractive index of cladding\n",
+ "\n",
+ "#calculate\n",
+ "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n",
+ "theta=math.asin(NA); #calculation of acceptance angle\n",
+ "theta1=theta*180/3.14;\n",
+ "#result\n",
+ "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n",
+ "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";\n",
+ "print \" (roundoff error)\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical aperture of the fibre is NA= 0.296\n",
+ "The acceptance angle of the optical fibre is = 17.26 degree\n",
+ " (roundoff error)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |