summaryrefslogtreecommitdiff
path: root/Antennas_and_Wave_Propagation/chapter25.ipynb
diff options
context:
space:
mode:
authortslee2014-11-27 17:17:59 +0530
committertslee2014-11-27 17:17:59 +0530
commit6e3407ba85ae84e1cee1ae0c972fd32c5504d827 (patch)
treeb89808101c39b1db1e3793eada2c8b702f856606 /Antennas_and_Wave_Propagation/chapter25.ipynb
parent36a03d6d76bac315dba73b2ba9555c7e3fe0234f (diff)
downloadPython-Textbook-Companions-6e3407ba85ae84e1cee1ae0c972fd32c5504d827.tar.gz
Python-Textbook-Companions-6e3407ba85ae84e1cee1ae0c972fd32c5504d827.tar.bz2
Python-Textbook-Companions-6e3407ba85ae84e1cee1ae0c972fd32c5504d827.zip
added books
Diffstat (limited to 'Antennas_and_Wave_Propagation/chapter25.ipynb')
-rw-r--r--Antennas_and_Wave_Propagation/chapter25.ipynb242
1 files changed, 242 insertions, 0 deletions
diff --git a/Antennas_and_Wave_Propagation/chapter25.ipynb b/Antennas_and_Wave_Propagation/chapter25.ipynb
new file mode 100644
index 00000000..b013f142
--- /dev/null
+++ b/Antennas_and_Wave_Propagation/chapter25.ipynb
@@ -0,0 +1,242 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h1>Chapter 25: Sky Wave Propagation<h1>"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 25-5.1, Page number: 823<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "muf = 10e6 #Maximum usable frequency (Hz)\n",
+ "h = 300 #Height of reflection (km)\n",
+ "n = 0.9 #Maximum value of refractive index (unitless)\n",
+ "\n",
+ "#Calculations\n",
+ "Nmax = (1 - n**2)*(muf**2)/81 #Max. Number of electrons per cubic cm\n",
+ "fc = 9*sqrt(Nmax) #Critical frequency (Hz)\n",
+ "dskip = 2*h*sqrt((muf/fc)**2 - 1) #Skip distance (km)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"The skip distance is\", round(dskip,1), \"km\"\n",
+ "\n",
+ "#Numerical error in the calculation of sqrt((muf/fc)**2 - 1) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2.34567901235e+11 4358898.94354\n",
+ "The skip distance is 1238.8 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 25-5.2, Page number: 823<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fE = 3e6 #Critical frequency for E layer (Hz)\n",
+ "fF1 = 5e6 #Critical frequency for F1 layer (Hz)\n",
+ "fF2 = 9e6 #Critical frequency for F2 layer (Hz)\n",
+ "\n",
+ "#Calculations\n",
+ "N_E = (fE**2)/81 #Concentration of electrons in E layer (per cubic cm)\n",
+ "N_F1 = (fF1**2)/81 #Concentration of electrons in F1 layer (per cubic cm)\n",
+ "N_F2 = (fF2**2)/81 #Concentration of electrons in F2 layer (per cubic cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The concentration of electrons in E layer is\", round(N_E,-8), \"per cubic cm\"\n",
+ "print \"The concentration of electrons in F1 layer is\", round(N_F1,-8), \"per cubic cm\"\n",
+ "print \"The concentration of electrons in F2 layer is\", N_F2, \"per cubic cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The concentration of electrons in E layer is 1.111e+11 per cubic cm\n",
+ "The concentration of electrons in F1 layer is 3.086e+11 per cubic cm\n",
+ "The concentration of electrons in F2 layer is 1e+12 per cubic cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 25-5.3, Page number: 823<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "N_E = 0.8*0.111e12 #Concentration of electrons in E layer (per cubic cm)\n",
+ "N_F1 = 0.8*0.3086e12 #Concentration of electrons in E layer (per cubic cm)\n",
+ "N_F2 = 0.8*1e12 #Concentration of electrons in E layer (per cubic cm)\n",
+ "\n",
+ "#Calculations\n",
+ "fE = 9*sqrt(N_E) #Critical frequency in E layer (Hz)\n",
+ "fF1 = 9*sqrt(N_F1) #Cricital frequency in F1 layer (Hz)\n",
+ "fF2 = 9*sqrt(N_F2) #Critical frequency in F2 layer (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Critical frequency in E layer is\", round(fE,-4),\"Hz\"\n",
+ "print \"The Critical frequency in F1 layer is\", round(fF1,-4),\"Hz\"\n",
+ "print \"The Critical frequency in F2 layer is\", round(fF2,-3),\"Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Critical frequency in E layer is 2680000.0 Hz\n",
+ "The Critical frequency in F1 layer is 4470000.0 Hz\n",
+ "The Critical frequency in F2 layer is 8050000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 25-6.1, Page number: 829<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos, sqrt, pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "hD = 70 #Height of D layer (km)\n",
+ "hE = 130 #Height of E layer (km)\n",
+ "hF1 = 230 #Height of F1 layer (km)\n",
+ "hF2 = 350 #Height of F2 layer (km)\n",
+ "theta = 10*pi/180 #Angle of incidence (radians)\n",
+ "\n",
+ "#Calculations\n",
+ "temp = sqrt((cos(theta))**-2 - 1)\n",
+ "d1 = 2*hD*temp #Maximum single hop distance for D layer (km)\n",
+ "d2 = 2*hE*temp #Maximum single hop distance for E layer (km)\n",
+ "d3 = 2*hF1*temp #Maximum single hop distance for F1 layer (km)\n",
+ "d4 = 2*hF2*temp #Maximum single hop distance for F2 layer (km)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Maximum single hop distance for D layer is\", round(d1,1), \"km\"\n",
+ "print \"The Maximum single hop distance for E layer is\", round(d2,2), \"km\"\n",
+ "print \"The Maximum single hop distance for F1 layer is\", round(d3,2), \"km\"\n",
+ "print \"The Maximum single hop distance for F2 layer is\", round(d4,1), \"km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Maximum single hop distance for D layer is 24.7 km\n",
+ "The Maximum single hop distance for E layer is 45.85 km\n",
+ "The Maximum single hop distance for F1 layer is 81.11 km\n",
+ "The Maximum single hop distance for F2 layer is 123.4 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 25-9.1, Page number: 832<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi, sqrt, cos\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 200 #Height of layer (km)\n",
+ "beta = 20 #Takeoff angle (degrees)\n",
+ "R = 6370 #Earth's radius (km)\n",
+ "\n",
+ "#Calculations\n",
+ "phi_0 = 90 - beta #Take off angle for flat earth (degrees)\n",
+ "h = (d/2)/(sqrt((cos(phi_0*pi/180)**-2) - 1)) #Skip distance for case (a) (km)\n",
+ "\n",
+ "phi_02 = 90 - beta - 57.2*d/(2*R)\n",
+ " #Take off angle for spherical earth (degrees)\n",
+ "h2 = (d/2)/(sqrt((cos(phi_02*pi/180)**-2) - 1))\n",
+ " #Skip distance for case (b) (km)\n",
+ "\n",
+ "#Result\n",
+ "print \"The skip distance for case (a) is\", round(h,3), \"km\"\n",
+ "print \"The skip distance for case (b) is\", round(h2,2), \"km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The skip distance for case (a) is 36.397 km\n",
+ "The skip distance for case (b) is 38.18 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file