summaryrefslogtreecommitdiff
path: root/A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb
diff options
context:
space:
mode:
authordebashisdeb2014-06-20 15:42:42 +0530
committerdebashisdeb2014-06-20 15:42:42 +0530
commit83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch)
treef54eab21dd3d725d64a495fcd47c00d37abed004 /A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb
parenta78126bbe4443e9526a64df9d8245c4af8843044 (diff)
downloadPython-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip
removing problem statements
Diffstat (limited to 'A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb')
-rw-r--r--A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb2076
1 files changed, 1034 insertions, 1042 deletions
diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb b/A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb
index 53a08905..581d450b 100644
--- a/A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb
+++ b/A_Comprehensive_Textbook_Of_Applied_Physics_/Chapter5.ipynb
@@ -1,1043 +1,1035 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "UNIT-5 Electricity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.1,Page no:152"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate current flowing through a conductor\n",
- "\n",
- "#Variable declaration \n",
- "n=10**6 #no. of electrons\n",
- "e=1.6*10**-19 #charge on an electron in C\n",
- "\n",
- "#Calculation\n",
- "q=n*e #calculating total charge\n",
- "t=10**-3 #time in second\n",
- "I=q/t #calculating current\n",
- "\n",
- "#Result\n",
- "print\"Current flowing = \",I,\"Ampere\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current flowing = 1.6e-10 Ampere\n"
- ]
- }
- ],
- "prompt_number": 71
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.2,Page no:152"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#No of electrons passing through a lamp\n",
- "\n",
- "#Variable declaration \n",
- "I=300*10**-3 #current n Ampere\n",
- "t=60 #time in second\n",
- "e=1.6*10**-19 #chatge on electron in C\n",
- "\n",
- "#Calculation\n",
- "q=I*t #calculating charge\n",
- "n=q/e #calculating no of electrons\n",
- "\n",
- "#Result\n",
- "print\"No. of electrons = \",n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "No. of electrons = 1.125e+20\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.3,Page no:154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Frequency of electrons across a conductor\n",
- "\n",
- "#Variable declaration \n",
- "V=200 #voltage in volt\n",
- "R=100 #resistance in Ohm\n",
- "e=1.6*10**-19 #charge on an electron in C\n",
- "\n",
- "#Calculation\n",
- "I=V/R #Ohm's law\n",
- "t=1 #time in second\n",
- "q=I*t #calculating charge\n",
- "n=q/e #calculating no of electrons\n",
- "\n",
- "#Result\n",
- "print\"No. of electrons = \",n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "No. of electrons = 1.25e+19\n"
- ]
- }
- ],
- "prompt_number": 72
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.4,Page no:156"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Resistivity of small wire\n",
- "\n",
- "#Variable declaration \n",
- "l=15 #length in m\n",
- "A=6*10**-7 #area in m square\n",
- "R=5 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "p=(A*R)/l #calculating resistivity\n",
- "\n",
- "#Result\n",
- "print\"Resistivity= \",p,\"Ohm metre\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistivity= 2e-07 Ohm metre\n"
- ]
- }
- ],
- "prompt_number": 73
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.5,Page no:157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Resistivity of a normal wire\n",
- "\n",
- "#Variable declaration \n",
- "l=0.1 #length in m\n",
- "A=10**-4 #area in m square\n",
- "R=0.01 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "p=(A*R)/l #calculating resistivity\n",
- "\n",
- "#Result\n",
- "print\"Resistivity = \",p,\"Ohm metre\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistivity = 1e-05 Ohm metre\n"
- ]
- }
- ],
- "prompt_number": 74
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.6,Page no:157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Resistivity of a long wire\n",
- "\n",
- "import math \n",
- "\n",
- "#Variable declaration\n",
- "L=1 #length in m\n",
- "r=0.2*10**-3 #radius in m\n",
- "R=2 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*(r)**2 #calculating area\n",
- "P=(R*A)/L #calculating resistivity\n",
- "\n",
- "#Result\n",
- "print\"Resistivity =%.2g\"%P,\"Ohm.metre\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistivity =2.5e-07 Ohm.metre\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.7,Page no:158"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#New resistance of a wire after drawn out\n",
- "\n",
- "#Variable declaration \n",
- "R1=5 #resisitance in Ohm\n",
- "\n",
- "#Calculation\n",
- "#A2=A/3\n",
- "#R2/5=3l*3/A*A/l\n",
- "#R2=9*5\n",
- "\n",
- "R2=9*R1 #calculating using R2/A1=(l2/A2)*(A1/l1)\n",
- "print\"Resisitance = \",R2,\"Ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resisitance = 45 Ohm\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.8,Page no:159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Change in resistance of a wire\n",
- "\n",
- "#Variable declaration \n",
- "R1=5 #resisitance in Ohm\n",
- "\n",
- "#Calculation\n",
- "#A2=A/2\n",
- "#R1=rho*l1/A1*R2\n",
- "#R2=rho*l2/A2\n",
- "#R2/R1=A1/l1\n",
- "R2=4*R1 #calculating using R2/A1=(l2/A2)*(A1/l1)\n",
- "\n",
- "#Result\n",
- "print\"Resisitance= \",R2,\"Ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resisitance= 20 Ohm\n"
- ]
- }
- ],
- "prompt_number": 70
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.9,Page no:162"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Total resistance in parallel\n",
- "\n",
- "#Variable declaration \n",
- "R1=2 #resisitance in Ohm\n",
- "R2=4 #resistance in Ohm\n",
- "R3=5 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "R=(R1**-1)+(R2**-1)+(R3**-1) #calculating parallel resistance\n",
- "Rp=(1/R) \n",
- "\n",
- "#Result\n",
- "print\"Resisitance = \",Rp,\"Ohm\"\n",
- "print\"\\nNOTE:Incorrect answer in book\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resisitance = 1.05263157895 Ohm\n",
- "\n",
- "NOTE:Incorrect answer in book\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.10,Page no:163"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Series parallel combination resistance\n",
- "\n",
- "from scipy.optimize import fsolve \n",
- "\n",
- "#Variable declaration\n",
- "Rs=40 #resisitance in Ohm\n",
- "\n",
- "#Calculation\n",
- "#R1+R2=40\n",
- "#R1*R2=256\n",
- "#R1=256/R2\n",
- "#Putting this value in eq 1:\n",
- "#(256/R2)+R2=40\n",
- "from sympy import solve, symbols, pprint\n",
- "R2= symbols('R2')\n",
- "a=1\n",
- "b=-40\n",
- "c=256\n",
- "f = a*R2**2 + b*R2 + c\n",
- "solution = solve(f, R2)\n",
- "\n",
- "#Result\n",
- "print\"When R2=\",solution[0],\"Ohm R1=\",solution[1],\"Ohm\"\n",
- "print\"When R2=\",solution[1],\"Ohm R1=\",solution[0],\"Ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "When R2= 8 Ohm R1= 32 Ohm\n",
- "When R2= 32 Ohm R1= 8 Ohm\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.11,Page no:164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Find the valueof current in fig\n",
- "\n",
- "#Variable declaration \n",
- "V=2.0 #in volts\n",
- "R1=30.0 #resisitance in Ohm\n",
- "R2=60.0 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "Rp=(R1*R2)/(R1+R2) #calculating parallel resistance\n",
- "I=V/Rp #Ohm's law\n",
- "\n",
- "#Result\n",
- "print\"Resisitance = \",Rp,\"Ohm\"\n",
- "print\"Current = \",I,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resisitance = 20.0 Ohm\n",
- "Current = 0.1 A\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.12,Page no:165"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Combine resistance to get an equivalent resistance\n",
- "\n",
- "#Variable declaration \n",
- "R1=2.0 #resisitance in Ohm\n",
- "R2=3.0 #resistance in Ohm\n",
- "R3=1.0 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "Rp=(R1*R2)/(R1+R2) #calculating parallel resistance\n",
- "R=Rp+1.0 #1 Ohm in series\n",
- "Rs=(R1+R2+R3) #series resistances\n",
- "Rp=(1.0/R1)+(1.0/R2)+(1.0/R3) #calculating parallel resistance\n",
- "\n",
- "#Result\n",
- "print\"(1)Equivalent Resisitance= \",R,\"Ohm\" \n",
- "print\"(2)All resistances in series = \",Rs,\"Ohm\"\n",
- "print\"(3)All in Parallel = \",(1/Rp),\"Ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(1)Equivalent Resisitance= 2.2 Ohm\n",
- "(2)All resistances in series = 6.0 Ohm\n",
- "(3)All in Parallel = 0.545454545455 Ohm\n"
- ]
- }
- ],
- "prompt_number": 76
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.13,Page no:166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Total resistor of combination\n",
- "\n",
- "#Variable declaration \n",
- "V=20 #voltage in Volts\n",
- "R1=2.0 #resisitance in Ohm\n",
- "R2=4.0 #resistance in Ohm\n",
- "R3=5.0 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "Rp=(1/R1)+(1/R2)+(1/R3) #calculating parallel resistance\n",
- "R=1/Rp #Parallel\n",
- "I1=V/R1 #calculating current through R1\n",
- "I2=V/R2 #calculating current through R2\n",
- "I3=V/R3 #calculating current through R3\n",
- "I=V/R #calculating total current\n",
- "\n",
- "\n",
- "#Result\n",
- "print\"(a)Equivalent Resisitance = \",R,\"Ohm\"\n",
- "print\"Current through R1 = \",I1,\"Ampere\"\n",
- "print\"Current through R2 = \",I2,\"Ampere\" \n",
- "print\"Total current = \",I,\"Ampere\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a)Equivalent Resisitance = 1.05263157895 Ohm\n",
- "Current through R1 = 10.0 Ampere\n",
- "Current through R2 = 5.0 Ampere\n",
- "Total current = 19.0 Ampere\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.14,Page no:166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate no of resistors form total resistor\n",
- "\n",
- "#Variable declaration\n",
- "R=7 #Total resistanc of combination\n",
- "\n",
- "#Calculation\n",
- "def f(n):\n",
- " Rp = 6*(1/n) #resistance in parallel\n",
- " return(R-Rp-5)\n",
- "n=fsolve(f,1)\n",
- "\n",
- "#Result\n",
- "print\"n=\",n[0]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "n= 3.0\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.15,Page no:173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Voltage and current in figure\n",
- "\n",
- "#Variable declaration \n",
- "R1=2 #resistance in Ohm\n",
- "R2=6 #resistance in Ohm\n",
- "R3=3 #resistance in Ohm\n",
- "V=24 #voltage in volts\n",
- "R=8 #resistance in Ohm\n",
- "\n",
- "#Calculation\n",
- "I=V/R #Ohm's Law\n",
- "V1=I*R1 #Ohm's Law\n",
- "V2=I*R2 #Ohm's Law\n",
- "V3=I*R3 #Ohm's Law\n",
- "\n",
- "#Result\n",
- "print\"Current = \",I,\"Ampere\" \n",
- "print\"Voltage drop across R1 = \",V1,\"Volts\"\n",
- "print\"Voltage drop across R2 = \",V2,\"Volts\" \n",
- "print\"Voltage drop across R3 = \",V3,\"Volts\"\n",
- "print\"\\nNOTE:Wrong answer of R3 in book\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current = 3 Ampere\n",
- "Voltage drop across R1 = 6 Volts\n",
- "Voltage drop across R2 = 18 Volts\n",
- "Voltage drop across R3 = 9 Volts\n",
- "\n",
- "NOTE:Wrong answer of R3 in book\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.16,Page no:173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Current through branches of circuit\n",
- "\n",
- "#Variable declaration \n",
- "R=15 #resistance in Ohm\n",
- "print\"KVL: 16I1+15I2=6 (1)\" #KVL equation\n",
- "I1=-1.66 #from(1)\n",
- "I2=2.17 #from (1)\n",
- "#Calculation\n",
- "V=(I1+I2)*R #calculating potential difference\n",
- "\n",
- "#Result\n",
- "print\"Potential difference= \",V,\"Volt\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "KVL: 16I1+15I2=6 (1)\n",
- "Potential difference= 7.65 Volt\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.17,Page no:174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine current in wheatstone bridge\n",
- "\n",
- "print\"3I1-I2-1=0 (1)\" #KVL equation\n",
- "print\"3I1-I2+2I=2 (2)\" #KVL equation\n",
- "print\"3I1-I1+2I=2 (3)\" #KVL equation\n",
- "\n",
- "#Variable declaration\n",
- "I1=4/17.0 #from (1)(2)(3)through AB \n",
- "I2=-2/17.0 #from (1)(2)(3)through BD\n",
- "I=3*I1+I2 #from (1)(2)(3)through main circuit\n",
- "\n",
- "#Calculation\n",
- "Ibc=I1-I2 #calculating current in BC\n",
- "Iad=I-I1 #calculating current in AD\n",
- "Idc=I-I1+I2 #calculating current in DC\n",
- "\n",
- "#Result\n",
- "print\"Current in branch BC = \",Ibc,\"Ampere\"\n",
- "print\"NOTE:Calculation mistake in book while calculating for BC\"\n",
- "print\"Current in branch AD = \",Iad,\"Ampere\"\n",
- "print\"Current in branch DC = \",Idc,\"Ampere\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "3I1-I2-1=0 (1)\n",
- "3I1-I2+2I=2 (2)\n",
- "3I1-I1+2I=2 (3)\n",
- "Current in branch BC = 0.352941176471 Ampere\n",
- "NOTE:Calculation mistake in book while calculating for BC\n",
- "Current in branch AD = 0.352941176471 Ampere\n",
- "Current in branch DC = 0.235294117647 Ampere\n"
- ]
- }
- ],
- "prompt_number": 77
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.18,Page no:176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Current through a galvanometer in wheatstone bridge\n",
- "\n",
- "#Variable declaration \n",
- "P=10 #Ohm\n",
- "Q=3 #Ohm\n",
- "R=12 #Ohm\n",
- "S=6 #Ohm\n",
- "G=20 #Ohm\n",
- "\n",
- "\n",
- "#Calculation\n",
- "print\"-12I+22I1+IgG=0 (1)\" #KVL\n",
- "print\"6I-9I1+29Ig=0 (2)\" #KVL\n",
- "print\"13I1-3Ig=2 (3)\" #KVL\n",
- "#From above equations\n",
- "import numpy as np\n",
- "a = np.array([[-12,22,20],[6,-9,29],[0,13,-3]]) \n",
- "b = np.array([[0],[0],[2]])\n",
- "np.linalg.solve(a,b)\n",
- "\n",
- "\n",
- "#Result\n",
- "print\"Current through Galvanometer = \",round(Ig*1000,2),\"mA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "-12I+22I1+IgG=0 (1)\n",
- "6I-9I1+29Ig=0 (2)\n",
- "13I1-3Ig=2 (3)\n",
- "Current through Galvanometer = 7.8 mA\n"
- ]
- }
- ],
- "prompt_number": 78
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.19,Page no:179"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#% drop in heat in bulb\n",
- "\n",
- "#Variable declaration \n",
- "P=500 #power in Watts\n",
- "V=200 #voltage in Volts\n",
- "V1=160 #voltage in Volts\n",
- "\n",
- "#Calculation\n",
- "R=(V**2)/P #using P=V**2*R\n",
- "P1=(V1**2)/R #calculating power\n",
- "Dp=500-P1 #drop in heat\n",
- "D=(Dp*100)/500 #percentage drop\n",
- "\n",
- "#Result\n",
- "print\"Resistance= \",R,\"Ohm\"\n",
- "print\"% Drop in heat production = \",D,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistance= 80 Ohm\n",
- "% Drop in heat production = 36 %\n"
- ]
- }
- ],
- "prompt_number": 79
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.20,Page no:180"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Bulbs connected in parallel\n",
- "\n",
- "#Variable declaration\n",
- "P1=100 #power in Watts\n",
- "P2=500 #power in Watts\n",
- "\n",
- "#Calculation\n",
- "P=P2/P1 #ratio\n",
- "\n",
- "#Result\n",
- "print \"P=\",P\n",
- "print\"P>0,I2=5I Therefore I2>I1\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "P= 5\n",
- "P>0,I2=5I Therefore I2>I1\n"
- ]
- }
- ],
- "prompt_number": 80
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.21,Page no:181"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Heat and light energy produced by bulb on voltage drop\n",
- "\n",
- "#Variable declaration \n",
- "t=1200 #time in second\n",
- "P=100 #power in Watts\n",
- "V=230 #voltage in Volts\n",
- "\n",
- "#Calculation\n",
- "R=(V**2)/P #calculating resistance\n",
- "V1=115 #supply voltage in Volts\n",
- "E=((V1**2)*t)/R #calculating energy\n",
- "\n",
- "#Result\n",
- "print\"Energy dissipated by bulb = \",E,\"J\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Energy dissipated by bulb = 30000 J\n"
- ]
- }
- ],
- "prompt_number": 81
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.22,Page no:181"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate effeciency of transmission\n",
- "\n",
- "#Variable declaration\n",
- "P=10**4 #power in Watts\n",
- "V=250 #voltage in Volts\n",
- "R=0.2 #resistance in ohm\n",
- "\n",
- "#Calculation\n",
- "Pl=((P/V)*(P/V))*R #calculating power loss\n",
- "print P1\n",
- "E=P/(Pl+P) #calculating efficiency\n",
- "\n",
- "#Result\n",
- "print\"Percent Efficiency = \",round(E*100),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "100\n",
- "Percent Efficiency = 97.0 %\n"
- ]
- }
- ],
- "prompt_number": 56
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.23,Page no:182"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Resistance and current capacity of a lamp\n",
- "\n",
- "#Variable declaration \n",
- "P=100.0 #power in Watts\n",
- "V=220.0 #voltage in Volts\n",
- "\n",
- "#Calculation\n",
- "I=P/V #Current in Ampere\n",
- "R=V/I #resistance\n",
- "\n",
- "#Result\n",
- "print\"Current = \",round(I,3),\"A\" \n",
- "print\"Resistance=\",R,\"Ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current = 0.455 A\n",
- "Resistance= 484.0 Ohm\n"
- ]
- }
- ],
- "prompt_number": 59
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:5.24,Page no:182"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Resistance of windings of electric motor\n",
- "\n",
- "#Variable declaration \n",
- "V=50 #voltage in Volts\n",
- "I=12 #Current in Ampere\n",
- "\n",
- "#Calculation\n",
- "P=V*I #power\n",
- "Pd=P*0.7 #power dissipated\n",
- "R=(Pd/(I)**2) \n",
- "\n",
- "#Result\n",
- "print\"Resistance = \",round(R,2),\"Ohm\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistance = 2.92 Ohm\n"
- ]
- }
- ],
- "prompt_number": 82
- }
- ],
- "metadata": {}
- }
- ]
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1f51544adf15fc8ba28e47ac7da1a371a1d8835331773ecfcfa211468f9b325d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "UNIT-5 Electricity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.1,Page no:152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "n=10**6 #no. of electrons\n",
+ "e=1.6*10**-19 #charge on an electron in C\n",
+ "\n",
+ "#Calculation\n",
+ "q=n*e #calculating total charge\n",
+ "t=10**-3 #time in second\n",
+ "I=q/t #calculating current\n",
+ "\n",
+ "#Result\n",
+ "print\"Current flowing = \",I,\"Ampere\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current flowing = 1.6e-10 Ampere\n"
+ ]
+ }
+ ],
+ "prompt_number": 71
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.2,Page no:152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "I=300*10**-3 #current n Ampere\n",
+ "t=60 #time in second\n",
+ "e=1.6*10**-19 #chatge on electron in C\n",
+ "\n",
+ "#Calculation\n",
+ "q=I*t #calculating charge\n",
+ "n=q/e #calculating no of electrons\n",
+ "\n",
+ "#Result\n",
+ "print\"No. of electrons = \",n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No. of electrons = 1.125e+20\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.3,Page no:154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=200 #voltage in volt\n",
+ "R=100 #resistance in Ohm\n",
+ "e=1.6*10**-19 #charge on an electron in C\n",
+ "\n",
+ "#Calculation\n",
+ "I=V/R #Ohm's law\n",
+ "t=1 #time in second\n",
+ "q=I*t #calculating charge\n",
+ "n=q/e #calculating no of electrons\n",
+ "\n",
+ "#Result\n",
+ "print\"No. of electrons = \",n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No. of electrons = 1.25e+19\n"
+ ]
+ }
+ ],
+ "prompt_number": 72
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.4,Page no:156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "l=15 #length in m\n",
+ "A=6*10**-7 #area in m square\n",
+ "R=5 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "p=(A*R)/l #calculating resistivity\n",
+ "\n",
+ "#Result\n",
+ "print\"Resistivity= \",p,\"Ohm metre\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity= 2e-07 Ohm metre\n"
+ ]
+ }
+ ],
+ "prompt_number": 73
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.5,Page no:157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "l=0.1 #length in m\n",
+ "A=10**-4 #area in m square\n",
+ "R=0.01 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "p=(A*R)/l #calculating resistivity\n",
+ "\n",
+ "#Result\n",
+ "print\"Resistivity = \",p,\"Ohm metre\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity = 1e-05 Ohm metre\n"
+ ]
+ }
+ ],
+ "prompt_number": 74
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.6,Page no:157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "#Variable declaration\n",
+ "L=1 #length in m\n",
+ "r=0.2*10**-3 #radius in m\n",
+ "R=2 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "A=math.pi*(r)**2 #calculating area\n",
+ "P=(R*A)/L #calculating resistivity\n",
+ "\n",
+ "#Result\n",
+ "print\"Resistivity =%.2g\"%P,\"Ohm.metre\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity =2.5e-07 Ohm.metre\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.7,Page no:158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "R1=5 #resisitance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#A2=A/3\n",
+ "#R2/5=3l*3/A*A/l\n",
+ "#R2=9*5\n",
+ "\n",
+ "R2=9*R1 #calculating using R2/A1=(l2/A2)*(A1/l1)\n",
+ "print\"Resisitance = \",R2,\"Ohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resisitance = 45 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 75
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.8,Page no:159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "R1=5 #resisitance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#A2=A/2\n",
+ "#R1=rho*l1/A1*R2\n",
+ "#R2=rho*l2/A2\n",
+ "#R2/R1=A1/l1\n",
+ "R2=4*R1 #calculating using R2/A1=(l2/A2)*(A1/l1)\n",
+ "\n",
+ "#Result\n",
+ "print\"Resisitance= \",R2,\"Ohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resisitance= 20 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 70
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.9,Page no:162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "R1=2 #resisitance in Ohm\n",
+ "R2=4 #resistance in Ohm\n",
+ "R3=5 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "R=(R1**-1)+(R2**-1)+(R3**-1) #calculating parallel resistance\n",
+ "Rp=(1/R) \n",
+ "\n",
+ "#Result\n",
+ "print\"Resisitance = \",Rp,\"Ohm\"\n",
+ "print\"\\nNOTE:Incorrect answer in book\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resisitance = 1.05263157895 Ohm\n",
+ "\n",
+ "NOTE:Incorrect answer in book\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.10,Page no:163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from scipy.optimize import fsolve \n",
+ "\n",
+ "#Variable declaration\n",
+ "Rs=40 #resisitance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#R1+R2=40\n",
+ "#R1*R2=256\n",
+ "#R1=256/R2\n",
+ "#Putting this value in eq 1:\n",
+ "#(256/R2)+R2=40\n",
+ "from sympy import solve, symbols, pprint\n",
+ "R2= symbols('R2')\n",
+ "a=1\n",
+ "b=-40\n",
+ "c=256\n",
+ "f = a*R2**2 + b*R2 + c\n",
+ "solution = solve(f, R2)\n",
+ "\n",
+ "#Result\n",
+ "print\"When R2=\",solution[0],\"Ohm R1=\",solution[1],\"Ohm\"\n",
+ "print\"When R2=\",solution[1],\"Ohm R1=\",solution[0],\"Ohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "When R2= 8 Ohm R1= 32 Ohm\n",
+ "When R2= 32 Ohm R1= 8 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.11,Page no:164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=2.0 #in volts\n",
+ "R1=30.0 #resisitance in Ohm\n",
+ "R2=60.0 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Rp=(R1*R2)/(R1+R2) #calculating parallel resistance\n",
+ "I=V/Rp #Ohm's law\n",
+ "\n",
+ "#Result\n",
+ "print\"Resisitance = \",Rp,\"Ohm\"\n",
+ "print\"Current = \",I,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resisitance = 20.0 Ohm\n",
+ "Current = 0.1 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.12,Page no:165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "R1=2.0 #resisitance in Ohm\n",
+ "R2=3.0 #resistance in Ohm\n",
+ "R3=1.0 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Rp=(R1*R2)/(R1+R2) #calculating parallel resistance\n",
+ "R=Rp+1.0 #1 Ohm in series\n",
+ "Rs=(R1+R2+R3) #series resistances\n",
+ "Rp=(1.0/R1)+(1.0/R2)+(1.0/R3) #calculating parallel resistance\n",
+ "\n",
+ "#Result\n",
+ "print\"(1)Equivalent Resisitance= \",R,\"Ohm\" \n",
+ "print\"(2)All resistances in series = \",Rs,\"Ohm\"\n",
+ "print\"(3)All in Parallel = \",(1/Rp),\"Ohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(1)Equivalent Resisitance= 2.2 Ohm\n",
+ "(2)All resistances in series = 6.0 Ohm\n",
+ "(3)All in Parallel = 0.545454545455 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 76
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.13,Page no:166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=20 #voltage in Volts\n",
+ "R1=2.0 #resisitance in Ohm\n",
+ "R2=4.0 #resistance in Ohm\n",
+ "R3=5.0 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Rp=(1/R1)+(1/R2)+(1/R3) #calculating parallel resistance\n",
+ "R=1/Rp #Parallel\n",
+ "I1=V/R1 #calculating current through R1\n",
+ "I2=V/R2 #calculating current through R2\n",
+ "I3=V/R3 #calculating current through R3\n",
+ "I=V/R #calculating total current\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print\"(a)Equivalent Resisitance = \",R,\"Ohm\"\n",
+ "print\"Current through R1 = \",I1,\"Ampere\"\n",
+ "print\"Current through R2 = \",I2,\"Ampere\" \n",
+ "print\"Total current = \",I,\"Ampere\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)Equivalent Resisitance = 1.05263157895 Ohm\n",
+ "Current through R1 = 10.0 Ampere\n",
+ "Current through R2 = 5.0 Ampere\n",
+ "Total current = 19.0 Ampere\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.14,Page no:166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "R=7 #Total resistanc of combination\n",
+ "\n",
+ "#Calculation\n",
+ "def f(n):\n",
+ " Rp = 6*(1/n) #resistance in parallel\n",
+ " return(R-Rp-5)\n",
+ "n=fsolve(f,1)\n",
+ "\n",
+ "#Result\n",
+ "print\"n=\",n[0]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "n= 3.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.15,Page no:173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "R1=2 #resistance in Ohm\n",
+ "R2=6 #resistance in Ohm\n",
+ "R3=3 #resistance in Ohm\n",
+ "V=24 #voltage in volts\n",
+ "R=8 #resistance in Ohm\n",
+ "\n",
+ "#Calculation\n",
+ "I=V/R #Ohm's Law\n",
+ "V1=I*R1 #Ohm's Law\n",
+ "V2=I*R2 #Ohm's Law\n",
+ "V3=I*R3 #Ohm's Law\n",
+ "\n",
+ "#Result\n",
+ "print\"Current = \",I,\"Ampere\" \n",
+ "print\"Voltage drop across R1 = \",V1,\"Volts\"\n",
+ "print\"Voltage drop across R2 = \",V2,\"Volts\" \n",
+ "print\"Voltage drop across R3 = \",V3,\"Volts\"\n",
+ "print\"\\nNOTE:Wrong answer of R3 in book\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current = 3 Ampere\n",
+ "Voltage drop across R1 = 6 Volts\n",
+ "Voltage drop across R2 = 18 Volts\n",
+ "Voltage drop across R3 = 9 Volts\n",
+ "\n",
+ "NOTE:Wrong answer of R3 in book\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.16,Page no:173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "R=15 #resistance in Ohm\n",
+ "print\"KVL: 16I1+15I2=6 (1)\" #KVL equation\n",
+ "I1=-1.66 #from(1)\n",
+ "I2=2.17 #from (1)\n",
+ "#Calculation\n",
+ "V=(I1+I2)*R #calculating potential difference\n",
+ "\n",
+ "#Result\n",
+ "print\"Potential difference= \",V,\"Volt\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "KVL: 16I1+15I2=6 (1)\n",
+ "Potential difference= 7.65 Volt\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.17,Page no:174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "print\"3I1-I2-1=0 (1)\" #KVL equation\n",
+ "print\"3I1-I2+2I=2 (2)\" #KVL equation\n",
+ "print\"3I1-I1+2I=2 (3)\" #KVL equation\n",
+ "\n",
+ "#Variable declaration\n",
+ "I1=4/17.0 #from (1)(2)(3)through AB \n",
+ "I2=-2/17.0 #from (1)(2)(3)through BD\n",
+ "I=3*I1+I2 #from (1)(2)(3)through main circuit\n",
+ "\n",
+ "#Calculation\n",
+ "Ibc=I1-I2 #calculating current in BC\n",
+ "Iad=I-I1 #calculating current in AD\n",
+ "Idc=I-I1+I2 #calculating current in DC\n",
+ "\n",
+ "#Result\n",
+ "print\"Current in branch BC = \",Ibc,\"Ampere\"\n",
+ "print\"NOTE:Calculation mistake in book while calculating for BC\"\n",
+ "print\"Current in branch AD = \",Iad,\"Ampere\"\n",
+ "print\"Current in branch DC = \",Idc,\"Ampere\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "3I1-I2-1=0 (1)\n",
+ "3I1-I2+2I=2 (2)\n",
+ "3I1-I1+2I=2 (3)\n",
+ "Current in branch BC = 0.352941176471 Ampere\n",
+ "NOTE:Calculation mistake in book while calculating for BC\n",
+ "Current in branch AD = 0.352941176471 Ampere\n",
+ "Current in branch DC = 0.235294117647 Ampere\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.18,Page no:176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "P=10 #Ohm\n",
+ "Q=3 #Ohm\n",
+ "R=12 #Ohm\n",
+ "S=6 #Ohm\n",
+ "G=20 #Ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "print\"-12I+22I1+IgG=0 (1)\" #KVL\n",
+ "print\"6I-9I1+29Ig=0 (2)\" #KVL\n",
+ "print\"13I1-3Ig=2 (3)\" #KVL\n",
+ "#From above equations\n",
+ "import numpy as np\n",
+ "a = np.array([[-12,22,20],[6,-9,29],[0,13,-3]]) \n",
+ "b = np.array([[0],[0],[2]])\n",
+ "np.linalg.solve(a,b)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print\"Current through Galvanometer = \",round(Ig*1000,2),\"mA\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "-12I+22I1+IgG=0 (1)\n",
+ "6I-9I1+29Ig=0 (2)\n",
+ "13I1-3Ig=2 (3)\n",
+ "Current through Galvanometer = 7.8 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.19,Page no:179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "P=500 #power in Watts\n",
+ "V=200 #voltage in Volts\n",
+ "V1=160 #voltage in Volts\n",
+ "\n",
+ "#Calculation\n",
+ "R=(V**2)/P #using P=V**2*R\n",
+ "P1=(V1**2)/R #calculating power\n",
+ "Dp=500-P1 #drop in heat\n",
+ "D=(Dp*100)/500 #percentage drop\n",
+ "\n",
+ "#Result\n",
+ "print\"Resistance= \",R,\"Ohm\"\n",
+ "print\"% Drop in heat production = \",D,\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistance= 80 Ohm\n",
+ "% Drop in heat production = 36 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.20,Page no:180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "P1=100 #power in Watts\n",
+ "P2=500 #power in Watts\n",
+ "\n",
+ "#Calculation\n",
+ "P=P2/P1 #ratio\n",
+ "\n",
+ "#Result\n",
+ "print \"P=\",P\n",
+ "print\"P>0,I2=5I Therefore I2>I1\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P= 5\n",
+ "P>0,I2=5I Therefore I2>I1\n"
+ ]
+ }
+ ],
+ "prompt_number": 80
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.21,Page no:181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "t=1200 #time in second\n",
+ "P=100 #power in Watts\n",
+ "V=230 #voltage in Volts\n",
+ "\n",
+ "#Calculation\n",
+ "R=(V**2)/P #calculating resistance\n",
+ "V1=115 #supply voltage in Volts\n",
+ "E=((V1**2)*t)/R #calculating energy\n",
+ "\n",
+ "#Result\n",
+ "print\"Energy dissipated by bulb = \",E,\"J\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy dissipated by bulb = 30000 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.22,Page no:181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "P=10**4 #power in Watts\n",
+ "V=250 #voltage in Volts\n",
+ "R=0.2 #resistance in ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Pl=((P/V)*(P/V))*R #calculating power loss\n",
+ "print P1\n",
+ "E=P/(Pl+P) #calculating efficiency\n",
+ "\n",
+ "#Result\n",
+ "print\"Percent Efficiency = \",round(E*100),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "100\n",
+ "Percent Efficiency = 97.0 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.23,Page no:182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "P=100.0 #power in Watts\n",
+ "V=220.0 #voltage in Volts\n",
+ "\n",
+ "#Calculation\n",
+ "I=P/V #Current in Ampere\n",
+ "R=V/I #resistance\n",
+ "\n",
+ "#Result\n",
+ "print\"Current = \",round(I,3),\"A\" \n",
+ "print\"Resistance=\",R,\"Ohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current = 0.455 A\n",
+ "Resistance= 484.0 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 59
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example no:5.24,Page no:182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=50 #voltage in Volts\n",
+ "I=12 #Current in Ampere\n",
+ "\n",
+ "#Calculation\n",
+ "P=V*I #power\n",
+ "Pd=P*0.7 #power dissipated\n",
+ "R=(Pd/(I)**2) \n",
+ "\n",
+ "#Result\n",
+ "print\"Resistance = \",round(R,2),\"Ohm\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistance = 2.92 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 82
+ }
+ ],
+ "metadata": {}
+ }
+ ]
} \ No newline at end of file