diff options
author | bansodanurag | 2019-09-19 17:35:31 +0530 |
---|---|---|
committer | GitHub | 2019-09-19 17:35:31 +0530 |
commit | 323085bde4b925b9deef0b1c9e4ce8576633831f (patch) | |
tree | 6076bf775c4d5db346326fa2560ec555af45c2d3 | |
parent | 10d88dab1caa3a7077c822fd79d36981b07c6433 (diff) | |
download | Openmodelica-gsl-library-323085bde4b925b9deef0b1c9e4ce8576633831f.tar.gz Openmodelica-gsl-library-323085bde4b925b9deef0b1c9e4ce8576633831f.tar.bz2 Openmodelica-gsl-library-323085bde4b925b9deef0b1c9e4ce8576633831f.zip |
-rw-r--r-- | External_Functions/gsl.mo | 262 |
1 files changed, 261 insertions, 1 deletions
diff --git a/External_Functions/gsl.mo b/External_Functions/gsl.mo index f6cce2a..5b2af3d 100644 --- a/External_Functions/gsl.mo +++ b/External_Functions/gsl.mo @@ -1,6 +1,77 @@ package gsl //This Library calls GNU Scientific Library from OpenModelica to compute different functions given in GSL(GNU Scientific Library package data_types + model gsl_multifit_linear_workspace + extends ExternalObject; + + function constructor + input Integer no_of_elements; + input Integer no_of_parameters; + output gsl_multifit_linear_workspace work; + + external "C" work = gsl_multifit_linear_alloc(no_of_elements, no_of_parameters) annotation( + Include = "#include<gsl/gsl_multifit.h>", + Library = "gsl", + Library = "gslcblas"); + end constructor; + + function destructor "Release storage of workspace work" + input gsl_multifit_linear_workspace work; + + external "C" gsl_multifit_linear_free(work) annotation( + Include = "#include<gsl/gsl_multifit.h>", + Library = "gsl", + Library = "gslcblas"); + end destructor; + end gsl_multifit_linear_workspace; + + model gsl_vector + extends ExternalObject; + + function constructor + input Integer N; + output gsl_vector p; + + external "C" p = gsl_vector_calloc(N) annotation( + Include = "#include <gsl/gsl_vector.h>", + Library = "gsl", + Library = "gslcblas"); + end constructor; + + function destructor "Release storage of p" + input gsl_vector p; + + external "C" gsl_vector_free(p) annotation( + Include = "#include <gsl/gsl_vector.h>", + Library = "gsl", + Library = "gslcblas"); + end destructor; + end gsl_vector; + + model gsl_matrix + extends ExternalObject; + + function constructor + input Integer N; + input Integer a; + output gsl_matrix p; + + external "C" p = gsl_matrix_calloc(N, a) annotation( + Include = "#include <gsl/gsl_matrix.h>", + Library = "gsl", + Library = "gslcblas"); + end constructor; + + function destructor "Release storage of p" + input gsl_matrix p; + + external "C" gsl_matrix_free(p) annotation( + Include = "#include <gsl/gsl_matrix.h>", + Library = "gsl", + Library = "gslcblas"); + end destructor; + end gsl_matrix; + model gsl_permutation extends ExternalObject; @@ -37,7 +108,44 @@ package data_types Integer e10; end gsl_sf_result_e10; end data_types; - +package LLSF + impure function gsl_fit_linear + input gsl.data_types.gsl_vector x; + input Real xstride; + input gsl.data_types.gsl_vector y; + input Real ystride; + input Integer n; + /* coefficients of the model Y=co+c1*X */ + output Real c0; + output Real c1; + output Real cov00; + output Real cov01; + output Real cov11; + output Real sumsq; + output Integer l; + + external "C" l = gsl_fit_linear(x, xstride, y, ystride, n, c0, c1, cov00, cov01, cov11, sumsq) annotation( + Include = "#include<gsl/gsl_fit.h>", + Library = "gsl", + Library = "gslcblas"); + end gsl_fit_linear; + + function gsl_multifit_linear + //no of parameter of the curve to be fit + input gsl.data_types.gsl_matrix X; + input gsl.data_types.gsl_vector y; + input gsl.data_types.gsl_vector c; + input gsl.data_types.gsl_matrix cov; + output Real chisq; + input gsl.data_types.gsl_multifit_linear_workspace work; + output Integer l; + + external "C" l = gsl_multifit_linear(X, y, c, cov, chisq, work) annotation( + Include = "#include<gsl/gsl_multifit.h>", + Library = "gsl", + Library = "gslcblas"); + end gsl_multifit_linear; + end LLSF; package mathematical function gsl_log1p //This function computes the value of log(1 + x) in a way that is accurate for small x @@ -3887,6 +3995,158 @@ package chap_21_9 package Examples + package Ex_5_1 + model Ex_5_1b + //given the concentration of A(Ca) with corresponding time we find the order of the reaction by first calculating the derivative of concentration of A and then fitting a line through the equation ln(-dCa/dt)= ln(k1)+alpha* ln(Ca) where dCa/dt is calculated using finite difference method + /*this model calls the functions gsl_matrix,gsl_vector,gsl_multifit_linear to fit a 5 parameters polynomial fit to given 7 point data*/ + parameter Integer a = 7; + //no of data points + parameter Integer p = 2; + //no of parameters to be fit + gsl.data_types.gsl_matrix X = gsl.data_types.gsl_matrix(a, p); + //allocating memory to the matrix + gsl.data_types.gsl_vector y = gsl.data_types.gsl_vector(a); + //allocating memory to the vector + gsl.data_types.gsl_vector c = gsl.data_types.gsl_vector(p); + // + gsl.data_types.gsl_matrix cov = gsl.data_types.gsl_matrix(a, p); + //allocating memory to the covariance matrix + Real c0 "exp(c1[1])"; + Real chisq; + gsl.data_types.gsl_multifit_linear_workspace work = gsl.data_types.gsl_multifit_linear_workspace(a, p); + //allocating memory to the workspace + parameter Real delta_time(unit = "time") = 50; + //time intervel + Integer l; + Real dCadt[7](unit = "mol/dm3/min"); + parameter Real Ca[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3}; + //parameter Real y1[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3}; + parameter Real x[:, :] = {{1, log(50e-3)}, {1, log(38e-3)}, {1, log(30.6e-3)}, {1, log(25.6e-3)}, {1, log(22.2e-3)}, {1, log(19.5e-3)}, {1, log(17.4e-3)}} "x matrix"; + Real c1[p] "parameters of best fit"; + algorithm + when initial() then + dCadt[1] := ((-3 * Ca[1]) + 4 * Ca[2] - Ca[3]) / (2 * delta_time); + dCadt[2] := (Ca[3] - Ca[1]) / (2 * delta_time); + dCadt[3] := (Ca[4] - Ca[2]) / (2 * delta_time); + dCadt[4] := (Ca[5] - Ca[3]) / (2 * delta_time); + dCadt[5] := (Ca[6] - Ca[4]) / (2 * delta_time); + dCadt[6] := (Ca[7] - Ca[5]) / (2 * delta_time); + dCadt[7] := (Ca[5] - 4 * Ca[6] + 3 * Ca[7]) / (2 * delta_time); + for i in 1:a loop + for j in 1:p loop + gsl.Vectors_and_Matrices.gsl_matrix_set(X, i - 1, j - 1, x[i, j]); + end for; + end for; + for k in 1:a loop + gsl.Vectors_and_Matrices.gsl_vector_set(y, k - 1, log(-dCadt[k])); + end for; + elsewhen terminal() then + (chisq, l) := gsl.LLSF.gsl_multifit_linear(X, y, c, cov, work); + for k in 1:p loop + c1[k] := gsl.Vectors_and_Matrices.gsl_vector_get(c, k - 1); + c0 := exp(c1[1]); + end for; + end when; + end Ex_5_1b; + + model Ex_5_1c + //given the concentration of A(Ca) with corresponding time we find the order of the reaction by first calculating the derivative of concentration of A and then fitting a line through the equation ln(-dCa/dt)= ln(k1)+alpha* ln(Ca) where dCa/dt is calculated using finite difference method + /*this model calls the functions gsl_matrix,gsl_vector,gsl_multifit_linear to fit a 5 parameters polynomial fit to given 7 point data*/ + Real k1(unit = "dm6/mol3/min") "reaction rate constant"; + parameter Real cb0(unit = "mol/dm3") = 0.5; + parameter Integer a = 7; + //no of data points + parameter Integer p = 2; + //no of parameters to be fit + gsl.data_types.gsl_matrix X = gsl.data_types.gsl_matrix(a, p); + //allocating memory to the matrix + gsl.data_types.gsl_vector y = gsl.data_types.gsl_vector(a); + //allocating memory to the vector + gsl.data_types.gsl_vector c = gsl.data_types.gsl_vector(p); + // + gsl.data_types.gsl_matrix cov = gsl.data_types.gsl_matrix(a, p); + //allocating memory to the covariance matrix + Real c0 "ln(k1)"; + Real chisq; + gsl.data_types.gsl_multifit_linear_workspace work = gsl.data_types.gsl_multifit_linear_workspace(a, p); + //allocating memory to the workspace + parameter Real delta_time(unit = "min") = 50 "time difference between two events"; + //time intervel + Integer l; + Real dCadt[7]; + parameter Real Ca[:](unit = "mol/dm3") = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3}; + //parameter Real y1[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3}; + parameter Real x[:, :] = {{1, log(50e-3)}, {1, log(38e-3)}, {1, log(30.6e-3)}, {1, log(25.6e-3)}, {1, log(22.2e-3)}, {1, log(19.5e-3)}, {1, log(17.4e-3)}} "x matrix"; + Real c1[p] "parameter of the best fit"; + algorithm + when initial() then + dCadt[1] := ((-3 * Ca[1]) + 4 * Ca[2] - Ca[3]) / (2 * delta_time); + dCadt[2] := (Ca[3] - Ca[1]) / (2 * delta_time); + dCadt[3] := (Ca[4] - Ca[2]) / (2 * delta_time); + dCadt[4] := (Ca[5] - Ca[3]) / (2 * delta_time); + dCadt[5] := (Ca[6] - Ca[4]) / (2 * delta_time); + dCadt[6] := (Ca[7] - Ca[5]) / (2 * delta_time); + dCadt[7] := (Ca[5] - 4 * Ca[6] + 3 * Ca[7]) / (2 * delta_time); + for i in 1:a loop + for j in 1:p loop + gsl.Vectors_and_Matrices.gsl_matrix_set(X, i - 1, j - 1, x[i, j]); + end for; + end for; + for k in 1:a loop + gsl.Vectors_and_Matrices.gsl_vector_set(y, k - 1, log(-dCadt[k])); + end for; + elsewhen terminal() then + (chisq, l) := gsl.LLSF.gsl_multifit_linear(X, y, c, cov, work); + for k in 1:p loop + c1[k] := gsl.Vectors_and_Matrices.gsl_vector_get(c, k - 1); + c0 := exp(c1[1]); + end for; + k1 := c0 / cb0; + end when; + end Ex_5_1c; + end Ex_5_1; + + package LLSF + model gsl_multifit_linear + /*this model calls the functions gsl_matrix,gsl_vector,gsl_multifit_linear to fit a 5 parameters polynomial fit to given 7 point data*/ + parameter Integer a = 7; + //no of data points + parameter Integer p = 5; + //no of parameters to be fit + gsl.data_types.gsl_matrix X = gsl.data_types.gsl_matrix(a, p); + //allocating memory to the matrix + parameter gsl.data_types.gsl_vector y = gsl.data_types.gsl_vector(a); + //allocating memory to the vector + parameter gsl.data_types.gsl_vector c = gsl.data_types.gsl_vector(p); + // + gsl.data_types.gsl_matrix cov = gsl.data_types.gsl_matrix(a, p); + //allocating memory to the covariance matrix + Real chisq; + gsl.data_types.gsl_multifit_linear_workspace work = gsl.data_types.gsl_multifit_linear_workspace(a, p); + //allocating memory to the workspace + Integer l; + parameter Real y1[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3}; + parameter Real x[:, :] = {{1, 0, 0, 0, 0}, {1, 50, 50 ^ 2, 50 ^ 3, 50 ^ 4}, {1, 100, 100 ^ 2, 100 ^ 3, 100 ^ 4}, {1, 150, 150 ^ 2, 150 ^ 3, 150 ^ 4}, {1, 200, 200 ^ 2, 200 ^ 3, 200 ^ 4}, {1, 250, 250 ^ 2, 250 ^ 3, 250 ^ 4}, {1, 300, 300 ^ 2, 300 ^ 3, 300 ^ 4}}; + Real c1[p]; + algorithm + when initial() then + for i in 1:a loop + for j in 1:p loop + gsl.Vectors_and_Matrices.gsl_matrix_set(X, i - 1, j - 1, x[i, j]); + end for; + end for; + for k in 1:a loop + gsl.Vectors_and_Matrices.gsl_vector_set(y, k - 1, y1[k]); + end for; + elsewhen terminal() then + (chisq, l) := gsl.LLSF.gsl_multifit_linear(X, y, c, cov, work); + for k in 1:p loop + c1[k] := gsl.Vectors_and_Matrices.gsl_vector_get(c, k - 1); + end for; + end when; + end gsl_multifit_linear; + end LLSF; + package Mathematical model gsl_log1p //This model computes the value of log(1 + x) in a way that is accurate for small x by calling the function gsl_log1p(x) |