diff options
author | bansodanurag | 2019-08-29 12:41:04 +0530 |
---|---|---|
committer | GitHub | 2019-08-29 12:41:04 +0530 |
commit | 10d88dab1caa3a7077c822fd79d36981b07c6433 (patch) | |
tree | 09d295cefb1094ae75e328020ae14f21452dc4ae | |
parent | 4f0d6fdea9130401afca640cef85e983c26f82e0 (diff) | |
download | Openmodelica-gsl-library-10d88dab1caa3a7077c822fd79d36981b07c6433.tar.gz Openmodelica-gsl-library-10d88dab1caa3a7077c822fd79d36981b07c6433.tar.bz2 Openmodelica-gsl-library-10d88dab1caa3a7077c822fd79d36981b07c6433.zip |
Update gsl.mo
test example in Running Statistics Chapter
-rw-r--r-- | External_Functions/gsl.mo | 32 |
1 files changed, 18 insertions, 14 deletions
diff --git a/External_Functions/gsl.mo b/External_Functions/gsl.mo index 542e5e0..f6cce2a 100644 --- a/External_Functions/gsl.mo +++ b/External_Functions/gsl.mo @@ -6608,21 +6608,25 @@ package chap_21_9 "Median and Percentiles" Real j[5]; Real n; algorithm +// all the equation should run in when statement /* add data to rstat accumulator */ - for i in 1:5 loop - j[i] := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_add(data[i], rstat_p); - end for; - mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_mean(rstat_p); - variance := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_variance(rstat_p); - largest := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_max(rstat_p); - smallest := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_min(rstat_p); - median := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_median(rstat_p); - sd := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_sd(rstat_p); - sd_mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_sd_mean(rstat_p); - skew := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_skew(rstat_p); - rms := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_rms(rstat_p); - kurtosis := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_kurtosis(rstat_p); - n := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_n(rstat_p); + when initial() then + for i in 1:5 loop + j[i] := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_add(data[i], rstat_p); + end for; + elsewhen terminal() then + mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_mean(rstat_p); + variance := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_variance(rstat_p); + largest := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_max(rstat_p); + smallest := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_min(rstat_p); + median := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_median(rstat_p); + sd := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_sd(rstat_p); + sd_mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_sd_mean(rstat_p); + skew := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_skew(rstat_p); + rms := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_rms(rstat_p); + kurtosis := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_kurtosis(rstat_p); + n := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_n(rstat_p); + end when; end test; end running_statistics; |