diff options
author | bansodanurag | 2019-07-24 12:18:35 +0530 |
---|---|---|
committer | GitHub | 2019-07-24 12:18:35 +0530 |
commit | 4f0d6fdea9130401afca640cef85e983c26f82e0 (patch) | |
tree | f5a04a1e65ac3dfc12c38c135e2d0fd2f6db5c9a | |
parent | 523b396697e7c1c6f5bbaccb276c4d47cd36bba2 (diff) | |
download | Openmodelica-gsl-library-4f0d6fdea9130401afca640cef85e983c26f82e0.tar.gz Openmodelica-gsl-library-4f0d6fdea9130401afca640cef85e983c26f82e0.tar.bz2 Openmodelica-gsl-library-4f0d6fdea9130401afca640cef85e983c26f82e0.zip |
date 23 july 2019 test example uploaded
-rw-r--r-- | External_Functions/gsl.mo | 39 |
1 files changed, 23 insertions, 16 deletions
diff --git a/External_Functions/gsl.mo b/External_Functions/gsl.mo index 4a7bef0..542e5e0 100644 --- a/External_Functions/gsl.mo +++ b/External_Functions/gsl.mo @@ -6601,23 +6601,30 @@ package chap_21_9 "Median and Percentiles" package running_statistics model test - gsl.data_types.gsl_rstat_workspace rstat_p = gsl.data_types.gsl_rstat_workspace(); - parameter Real data[:] = {17.2, 18.1}; - Real mean; - //, 16.5, 18.3, 12.6}; - /* Real mean, variance, largest, smallest, sd, rms, sd_mean, median, skew, kurtosis;*/ - //Real i; - Real j[2]; - algorithm + /* this model calculates the mean,variance,largest,smallest,median,sd,sd_mean,skew,rms,kurtosis and n of a given dataset */ + gsl.data_types.gsl_rstat_workspace rstat_p = gsl.data_types.gsl_rstat_workspace(); + parameter Real data[:] = {17.2, 18.1, 16.5, 18.3, 12.6}; + Real mean, variance, largest, smallest, sd, rms, sd_mean, median, skew, kurtosis; + Real j[5]; + Real n; +algorithm /* add data to rstat accumulator */ -//for i in 1:2 loop - j[1] := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_add(data[1], rstat_p); - j[2] := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_add(data[2], rstat_p); -//end for; - mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_mean(rstat_p); -//end for; -// i := 5; - end test; + for i in 1:5 loop + j[i] := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_add(data[i], rstat_p); + end for; + mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_mean(rstat_p); + variance := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_variance(rstat_p); + largest := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_max(rstat_p); + smallest := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_min(rstat_p); + median := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_median(rstat_p); + sd := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_sd(rstat_p); + sd_mean := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_sd_mean(rstat_p); + skew := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_skew(rstat_p); + rms := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_rms(rstat_p); + kurtosis := gsl.RUNNING_STATISTICS.chap_22_3.gsl_rstat_kurtosis(rstat_p); + n := gsl.RUNNING_STATISTICS.chap_22_2.gsl_rstat_n(rstat_p); +end test; + end running_statistics; end Examples; |