summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorbansodanurag2019-09-19 17:35:31 +0530
committerGitHub2019-09-19 17:35:31 +0530
commit323085bde4b925b9deef0b1c9e4ce8576633831f (patch)
tree6076bf775c4d5db346326fa2560ec555af45c2d3
parent10d88dab1caa3a7077c822fd79d36981b07c6433 (diff)
downloadOpenmodelica-gsl-library-master.tar.gz
Openmodelica-gsl-library-master.tar.bz2
Openmodelica-gsl-library-master.zip
Example 5-1 ,linear least squares fit addedHEADmaster
-rw-r--r--External_Functions/gsl.mo262
1 files changed, 261 insertions, 1 deletions
diff --git a/External_Functions/gsl.mo b/External_Functions/gsl.mo
index f6cce2a..5b2af3d 100644
--- a/External_Functions/gsl.mo
+++ b/External_Functions/gsl.mo
@@ -1,6 +1,77 @@
package gsl //This Library calls GNU Scientific Library from OpenModelica to compute different functions given in GSL(GNU Scientific Library
package data_types
+ model gsl_multifit_linear_workspace
+ extends ExternalObject;
+
+ function constructor
+ input Integer no_of_elements;
+ input Integer no_of_parameters;
+ output gsl_multifit_linear_workspace work;
+
+ external "C" work = gsl_multifit_linear_alloc(no_of_elements, no_of_parameters) annotation(
+ Include = "#include<gsl/gsl_multifit.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end constructor;
+
+ function destructor "Release storage of workspace work"
+ input gsl_multifit_linear_workspace work;
+
+ external "C" gsl_multifit_linear_free(work) annotation(
+ Include = "#include<gsl/gsl_multifit.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end destructor;
+ end gsl_multifit_linear_workspace;
+
+ model gsl_vector
+ extends ExternalObject;
+
+ function constructor
+ input Integer N;
+ output gsl_vector p;
+
+ external "C" p = gsl_vector_calloc(N) annotation(
+ Include = "#include <gsl/gsl_vector.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end constructor;
+
+ function destructor "Release storage of p"
+ input gsl_vector p;
+
+ external "C" gsl_vector_free(p) annotation(
+ Include = "#include <gsl/gsl_vector.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end destructor;
+ end gsl_vector;
+
+ model gsl_matrix
+ extends ExternalObject;
+
+ function constructor
+ input Integer N;
+ input Integer a;
+ output gsl_matrix p;
+
+ external "C" p = gsl_matrix_calloc(N, a) annotation(
+ Include = "#include <gsl/gsl_matrix.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end constructor;
+
+ function destructor "Release storage of p"
+ input gsl_matrix p;
+
+ external "C" gsl_matrix_free(p) annotation(
+ Include = "#include <gsl/gsl_matrix.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end destructor;
+ end gsl_matrix;
+
model gsl_permutation
extends ExternalObject;
@@ -37,7 +108,44 @@ package data_types
Integer e10;
end gsl_sf_result_e10;
end data_types;
-
+package LLSF
+ impure function gsl_fit_linear
+ input gsl.data_types.gsl_vector x;
+ input Real xstride;
+ input gsl.data_types.gsl_vector y;
+ input Real ystride;
+ input Integer n;
+ /* coefficients of the model Y=co+c1*X */
+ output Real c0;
+ output Real c1;
+ output Real cov00;
+ output Real cov01;
+ output Real cov11;
+ output Real sumsq;
+ output Integer l;
+
+ external "C" l = gsl_fit_linear(x, xstride, y, ystride, n, c0, c1, cov00, cov01, cov11, sumsq) annotation(
+ Include = "#include<gsl/gsl_fit.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end gsl_fit_linear;
+
+ function gsl_multifit_linear
+ //no of parameter of the curve to be fit
+ input gsl.data_types.gsl_matrix X;
+ input gsl.data_types.gsl_vector y;
+ input gsl.data_types.gsl_vector c;
+ input gsl.data_types.gsl_matrix cov;
+ output Real chisq;
+ input gsl.data_types.gsl_multifit_linear_workspace work;
+ output Integer l;
+
+ external "C" l = gsl_multifit_linear(X, y, c, cov, chisq, work) annotation(
+ Include = "#include<gsl/gsl_multifit.h>",
+ Library = "gsl",
+ Library = "gslcblas");
+ end gsl_multifit_linear;
+ end LLSF;
package mathematical
function gsl_log1p
//This function computes the value of log(1 + x) in a way that is accurate for small x
@@ -3887,6 +3995,158 @@ package chap_21_9
package Examples
+ package Ex_5_1
+ model Ex_5_1b
+ //given the concentration of A(Ca) with corresponding time we find the order of the reaction by first calculating the derivative of concentration of A and then fitting a line through the equation ln(-dCa/dt)= ln(k1)+alpha* ln(Ca) where dCa/dt is calculated using finite difference method
+ /*this model calls the functions gsl_matrix,gsl_vector,gsl_multifit_linear to fit a 5 parameters polynomial fit to given 7 point data*/
+ parameter Integer a = 7;
+ //no of data points
+ parameter Integer p = 2;
+ //no of parameters to be fit
+ gsl.data_types.gsl_matrix X = gsl.data_types.gsl_matrix(a, p);
+ //allocating memory to the matrix
+ gsl.data_types.gsl_vector y = gsl.data_types.gsl_vector(a);
+ //allocating memory to the vector
+ gsl.data_types.gsl_vector c = gsl.data_types.gsl_vector(p);
+ //
+ gsl.data_types.gsl_matrix cov = gsl.data_types.gsl_matrix(a, p);
+ //allocating memory to the covariance matrix
+ Real c0 "exp(c1[1])";
+ Real chisq;
+ gsl.data_types.gsl_multifit_linear_workspace work = gsl.data_types.gsl_multifit_linear_workspace(a, p);
+ //allocating memory to the workspace
+ parameter Real delta_time(unit = "time") = 50;
+ //time intervel
+ Integer l;
+ Real dCadt[7](unit = "mol/dm3/min");
+ parameter Real Ca[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3};
+ //parameter Real y1[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3};
+ parameter Real x[:, :] = {{1, log(50e-3)}, {1, log(38e-3)}, {1, log(30.6e-3)}, {1, log(25.6e-3)}, {1, log(22.2e-3)}, {1, log(19.5e-3)}, {1, log(17.4e-3)}} "x matrix";
+ Real c1[p] "parameters of best fit";
+ algorithm
+ when initial() then
+ dCadt[1] := ((-3 * Ca[1]) + 4 * Ca[2] - Ca[3]) / (2 * delta_time);
+ dCadt[2] := (Ca[3] - Ca[1]) / (2 * delta_time);
+ dCadt[3] := (Ca[4] - Ca[2]) / (2 * delta_time);
+ dCadt[4] := (Ca[5] - Ca[3]) / (2 * delta_time);
+ dCadt[5] := (Ca[6] - Ca[4]) / (2 * delta_time);
+ dCadt[6] := (Ca[7] - Ca[5]) / (2 * delta_time);
+ dCadt[7] := (Ca[5] - 4 * Ca[6] + 3 * Ca[7]) / (2 * delta_time);
+ for i in 1:a loop
+ for j in 1:p loop
+ gsl.Vectors_and_Matrices.gsl_matrix_set(X, i - 1, j - 1, x[i, j]);
+ end for;
+ end for;
+ for k in 1:a loop
+ gsl.Vectors_and_Matrices.gsl_vector_set(y, k - 1, log(-dCadt[k]));
+ end for;
+ elsewhen terminal() then
+ (chisq, l) := gsl.LLSF.gsl_multifit_linear(X, y, c, cov, work);
+ for k in 1:p loop
+ c1[k] := gsl.Vectors_and_Matrices.gsl_vector_get(c, k - 1);
+ c0 := exp(c1[1]);
+ end for;
+ end when;
+ end Ex_5_1b;
+
+ model Ex_5_1c
+ //given the concentration of A(Ca) with corresponding time we find the order of the reaction by first calculating the derivative of concentration of A and then fitting a line through the equation ln(-dCa/dt)= ln(k1)+alpha* ln(Ca) where dCa/dt is calculated using finite difference method
+ /*this model calls the functions gsl_matrix,gsl_vector,gsl_multifit_linear to fit a 5 parameters polynomial fit to given 7 point data*/
+ Real k1(unit = "dm6/mol3/min") "reaction rate constant";
+ parameter Real cb0(unit = "mol/dm3") = 0.5;
+ parameter Integer a = 7;
+ //no of data points
+ parameter Integer p = 2;
+ //no of parameters to be fit
+ gsl.data_types.gsl_matrix X = gsl.data_types.gsl_matrix(a, p);
+ //allocating memory to the matrix
+ gsl.data_types.gsl_vector y = gsl.data_types.gsl_vector(a);
+ //allocating memory to the vector
+ gsl.data_types.gsl_vector c = gsl.data_types.gsl_vector(p);
+ //
+ gsl.data_types.gsl_matrix cov = gsl.data_types.gsl_matrix(a, p);
+ //allocating memory to the covariance matrix
+ Real c0 "ln(k1)";
+ Real chisq;
+ gsl.data_types.gsl_multifit_linear_workspace work = gsl.data_types.gsl_multifit_linear_workspace(a, p);
+ //allocating memory to the workspace
+ parameter Real delta_time(unit = "min") = 50 "time difference between two events";
+ //time intervel
+ Integer l;
+ Real dCadt[7];
+ parameter Real Ca[:](unit = "mol/dm3") = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3};
+ //parameter Real y1[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3};
+ parameter Real x[:, :] = {{1, log(50e-3)}, {1, log(38e-3)}, {1, log(30.6e-3)}, {1, log(25.6e-3)}, {1, log(22.2e-3)}, {1, log(19.5e-3)}, {1, log(17.4e-3)}} "x matrix";
+ Real c1[p] "parameter of the best fit";
+ algorithm
+ when initial() then
+ dCadt[1] := ((-3 * Ca[1]) + 4 * Ca[2] - Ca[3]) / (2 * delta_time);
+ dCadt[2] := (Ca[3] - Ca[1]) / (2 * delta_time);
+ dCadt[3] := (Ca[4] - Ca[2]) / (2 * delta_time);
+ dCadt[4] := (Ca[5] - Ca[3]) / (2 * delta_time);
+ dCadt[5] := (Ca[6] - Ca[4]) / (2 * delta_time);
+ dCadt[6] := (Ca[7] - Ca[5]) / (2 * delta_time);
+ dCadt[7] := (Ca[5] - 4 * Ca[6] + 3 * Ca[7]) / (2 * delta_time);
+ for i in 1:a loop
+ for j in 1:p loop
+ gsl.Vectors_and_Matrices.gsl_matrix_set(X, i - 1, j - 1, x[i, j]);
+ end for;
+ end for;
+ for k in 1:a loop
+ gsl.Vectors_and_Matrices.gsl_vector_set(y, k - 1, log(-dCadt[k]));
+ end for;
+ elsewhen terminal() then
+ (chisq, l) := gsl.LLSF.gsl_multifit_linear(X, y, c, cov, work);
+ for k in 1:p loop
+ c1[k] := gsl.Vectors_and_Matrices.gsl_vector_get(c, k - 1);
+ c0 := exp(c1[1]);
+ end for;
+ k1 := c0 / cb0;
+ end when;
+ end Ex_5_1c;
+ end Ex_5_1;
+
+ package LLSF
+ model gsl_multifit_linear
+ /*this model calls the functions gsl_matrix,gsl_vector,gsl_multifit_linear to fit a 5 parameters polynomial fit to given 7 point data*/
+ parameter Integer a = 7;
+ //no of data points
+ parameter Integer p = 5;
+ //no of parameters to be fit
+ gsl.data_types.gsl_matrix X = gsl.data_types.gsl_matrix(a, p);
+ //allocating memory to the matrix
+ parameter gsl.data_types.gsl_vector y = gsl.data_types.gsl_vector(a);
+ //allocating memory to the vector
+ parameter gsl.data_types.gsl_vector c = gsl.data_types.gsl_vector(p);
+ //
+ gsl.data_types.gsl_matrix cov = gsl.data_types.gsl_matrix(a, p);
+ //allocating memory to the covariance matrix
+ Real chisq;
+ gsl.data_types.gsl_multifit_linear_workspace work = gsl.data_types.gsl_multifit_linear_workspace(a, p);
+ //allocating memory to the workspace
+ Integer l;
+ parameter Real y1[:] = {50e-3, 38e-3, 30.6e-3, 25.6e-3, 22.2e-3, 19.5e-3, 17.4e-3};
+ parameter Real x[:, :] = {{1, 0, 0, 0, 0}, {1, 50, 50 ^ 2, 50 ^ 3, 50 ^ 4}, {1, 100, 100 ^ 2, 100 ^ 3, 100 ^ 4}, {1, 150, 150 ^ 2, 150 ^ 3, 150 ^ 4}, {1, 200, 200 ^ 2, 200 ^ 3, 200 ^ 4}, {1, 250, 250 ^ 2, 250 ^ 3, 250 ^ 4}, {1, 300, 300 ^ 2, 300 ^ 3, 300 ^ 4}};
+ Real c1[p];
+ algorithm
+ when initial() then
+ for i in 1:a loop
+ for j in 1:p loop
+ gsl.Vectors_and_Matrices.gsl_matrix_set(X, i - 1, j - 1, x[i, j]);
+ end for;
+ end for;
+ for k in 1:a loop
+ gsl.Vectors_and_Matrices.gsl_vector_set(y, k - 1, y1[k]);
+ end for;
+ elsewhen terminal() then
+ (chisq, l) := gsl.LLSF.gsl_multifit_linear(X, y, c, cov, work);
+ for k in 1:p loop
+ c1[k] := gsl.Vectors_and_Matrices.gsl_vector_get(c, k - 1);
+ end for;
+ end when;
+ end gsl_multifit_linear;
+ end LLSF;
+
package Mathematical
model gsl_log1p
//This model computes the value of log(1 + x) in a way that is accurate for small x by calling the function gsl_log1p(x)