1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
|
//TITLE
//
// R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
//
//DESCRIPTION
//
// A C++ templated version of the RTree algorithm.
// For more information please read the comments in RTree.h
//
//AUTHORS
//
// * 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
// * 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
// * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
// * 2004 Templated C++ port by Greg Douglas
// * 2013 CERN (www.cern.ch)
//
//LICENSE:
//
// Entirely free for all uses. Enjoy!
#ifndef RTREE_H
#define RTREE_H
// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.
// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#define ASSERT assert // RTree uses ASSERT( condition )
#ifndef rMin
#define rMin std::min
#endif // rMin
#ifndef rMax
#define rMax std::max
#endif // rMax
//
// RTree.h
//
#define RTREE_TEMPLATE template <class DATATYPE, class ELEMTYPE, int NUMDIMS, \
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
#define RTREE_SEARCH_TEMPLATE template <class DATATYPE, class ELEMTYPE, int NUMDIMS, \
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES, class VISITOR>
#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
TMINNODES>
#define RTREE_SEARCH_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
TMINNODES, VISITOR>
#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
// Fwd decl
class RTFileStream; // File I/O helper class, look below for implementation and notes.
/// \class RTree
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
///
/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
/// ELEMTYPE Type of element such as int or float
/// NUMDIMS Number of dimensions such as 2 or 3
/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
/// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
/// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
/// array similar to MFC CArray or STL Vector for returning search query result.
///
template <class DATATYPE, class ELEMTYPE, int NUMDIMS,
class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
class RTree
{
protected:
struct Node; // Fwd decl. Used by other internal structs and iterator
public:
// These constant must be declared after Branch and before Node struct
// Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier.
enum {
MAXNODES = TMAXNODES, ///< Max elements in node
MINNODES = TMINNODES, ///< Min elements in node
};
struct Statistics {
int maxDepth;
int avgDepth;
int maxNodeLoad;
int avgNodeLoad;
int totalItems;
};
public:
RTree();
virtual ~RTree();
/// Insert entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Insert( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId );
/// Remove entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Remove( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId );
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
/// \param a_context User context to pass as parameter to a_resultCallback
/// \return Returns the number of entries found
int Search( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
bool a_resultCallback( DATATYPE a_data, void* a_context ),
void* a_context );
template <class VISITOR>
int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], VISITOR& a_visitor )
{
#ifdef _DEBUG
for( int index = 0; index<NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis<NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int cnt;
Search( m_root, &rect, a_visitor, cnt );
return cnt;
}
/// Calculate Statistics
Statistics CalcStats();
/// Remove all entries from tree
void RemoveAll();
/// Count the data elements in this container. This is slow as no internal counter is maintained.
int Count();
/// Load tree contents from file
bool Load( const char* a_fileName );
/// Load tree contents from stream
bool Load( RTFileStream& a_stream );
/// Save tree contents to file
bool Save( const char* a_fileName );
/// Save tree contents to stream
bool Save( RTFileStream& a_stream );
/// Find the nearest neighbor of a specific point.
/// It uses the MINDIST method, simplifying the one from "R-Trees: Theory and Applications" by Yannis Manolopoulos et al.
/// The bounding rectangle is used to calculate the distance to the DATATYPE.
/// \param a_point point to start the search
/// \return Returns the DATATYPE located closest to a_point, 0 if the tree is empty.
DATATYPE NearestNeighbor( const ELEMTYPE a_point[NUMDIMS] );
/// Find the nearest neighbor of a specific point.
/// It uses the MINDIST method, simplifying the one from "R-Trees: Theory and Applications" by Yannis Manolopoulos et al.
/// It receives a callback function to calculate the distance to a DATATYPE object, instead of using the bounding rectangle.
/// \param a_point point to start the search
/// \param a_squareDistanceCallback function that performs the square distance calculation for the selected DATATYPE.
/// \param a_squareDistance Pointer in which the square distance to the nearest neighbour will be returned.
/// \return Returns the DATATYPE located closest to a_point, 0 if the tree is empty.
DATATYPE NearestNeighbor( const ELEMTYPE a_point[NUMDIMS],
ELEMTYPE a_squareDistanceCallback( const ELEMTYPE a_point[NUMDIMS], DATATYPE a_data ),
ELEMTYPE* a_squareDistance );
/// Iterator is not remove safe.
class Iterator
{
private:
enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node
struct StackElement
{
Node* m_node;
int m_branchIndex;
};
public:
Iterator() { Init(); }
~Iterator() { }
/// Is iterator invalid
bool IsNull() { return m_tos <= 0; }
/// Is iterator pointing to valid data
bool IsNotNull() { return m_tos > 0; }
/// Access the current data element. Caller must be sure iterator is not NULL first.
DATATYPE& operator*()
{
ASSERT( IsNotNull() );
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Access the current data element. Caller must be sure iterator is not NULL first.
const DATATYPE& operator*() const
{
ASSERT( IsNotNull() );
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Find the next data element
bool operator++() { return FindNextData(); }
/// Get the bounds for this node
void GetBounds( ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS] )
{
ASSERT( IsNotNull() );
StackElement& curTos = m_stack[m_tos - 1];
Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
for( int index = 0; index < NUMDIMS; ++index )
{
a_min[index] = curBranch.m_rect.m_min[index];
a_max[index] = curBranch.m_rect.m_max[index];
}
}
private:
/// Reset iterator
void Init() { m_tos = 0; }
/// Find the next data element in the tree (For internal use only)
bool FindNextData()
{
for( ; ; )
{
if( m_tos <= 0 )
{
return false;
}
StackElement curTos = Pop(); // Copy stack top cause it may change as we use it
if( curTos.m_node->IsLeaf() )
{
// Keep walking through data while we can
if( curTos.m_branchIndex + 1 < curTos.m_node->m_count )
{
// There is more data, just point to the next one
Push( curTos.m_node, curTos.m_branchIndex + 1 );
return true;
}
// No more data, so it will fall back to previous level
}
else
{
if( curTos.m_branchIndex + 1 < curTos.m_node->m_count )
{
// Push sibling on for future tree walk
// This is the 'fall back' node when we finish with the current level
Push( curTos.m_node, curTos.m_branchIndex + 1 );
}
// Since cur node is not a leaf, push first of next level to get deeper into the tree
Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
Push( nextLevelnode, 0 );
// If we pushed on a new leaf, exit as the data is ready at TOS
if( nextLevelnode->IsLeaf() )
{
return true;
}
}
}
}
/// Push node and branch onto iteration stack (For internal use only)
void Push( Node* a_node, int a_branchIndex )
{
m_stack[m_tos].m_node = a_node;
m_stack[m_tos].m_branchIndex = a_branchIndex;
++m_tos;
ASSERT( m_tos <= MAX_STACK );
}
/// Pop element off iteration stack (For internal use only)
StackElement& Pop()
{
ASSERT( m_tos > 0 );
--m_tos;
return m_stack[m_tos];
}
StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion
int m_tos; ///< Top Of Stack index
friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner
};
/// Get 'first' for iteration
void GetFirst( Iterator& a_it )
{
a_it.Init();
Node* first = m_root;
while( first )
{
if( first->IsInternalNode() && first->m_count > 1 )
{
a_it.Push( first, 1 ); // Descend sibling branch later
}
else if( first->IsLeaf() )
{
if( first->m_count )
{
a_it.Push( first, 0 );
}
break;
}
first = first->m_branch[0].m_child;
}
}
/// Get Next for iteration
void GetNext( Iterator& a_it ) { ++a_it; }
/// Is iterator NULL, or at end?
bool IsNull( Iterator& a_it ) { return a_it.IsNull(); }
/// Get object at iterator position
DATATYPE& GetAt( Iterator& a_it ) { return *a_it; }
protected:
/// Minimal bounding rectangle (n-dimensional)
struct Rect
{
ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
};
/// May be data or may be another subtree
/// The parents level determines this.
/// If the parents level is 0, then this is data
struct Branch
{
Rect m_rect; ///< Bounds
union
{
Node* m_child; ///< Child node
DATATYPE m_data; ///< Data Id or Ptr
};
};
/// Node for each branch level
struct Node
{
bool IsInternalNode() { return m_level > 0; } // Not a leaf, but a internal node
bool IsLeaf() { return m_level == 0; } // A leaf, contains data
int m_count; ///< Count
int m_level; ///< Leaf is zero, others positive
Branch m_branch[MAXNODES]; ///< Branch
};
/// A link list of nodes for reinsertion after a delete operation
struct ListNode
{
ListNode* m_next; ///< Next in list
Node* m_node; ///< Node
};
/// Variables for finding a split partition
struct PartitionVars
{
int m_partition[MAXNODES + 1];
int m_total;
int m_minFill;
int m_taken[MAXNODES + 1];
int m_count[2];
Rect m_cover[2];
ELEMTYPEREAL m_area[2];
Branch m_branchBuf[MAXNODES + 1];
int m_branchCount;
Rect m_coverSplit;
ELEMTYPEREAL m_coverSplitArea;
};
/// Data structure used for Nearest Neighbor search implementation
struct NNNode
{
Branch m_branch;
ELEMTYPE minDist;
bool isLeaf;
};
Node* AllocNode();
void FreeNode( Node* a_node );
void InitNode( Node* a_node );
void InitRect( Rect* a_rect );
bool InsertRectRec( Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
Node** a_newNode,
int a_level );
bool InsertRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level );
Rect NodeCover( Node* a_node );
bool AddBranch( Branch* a_branch, Node* a_node, Node** a_newNode );
void DisconnectBranch( Node* a_node, int a_index );
int PickBranch( Rect* a_rect, Node* a_node );
Rect CombineRect( Rect* a_rectA, Rect* a_rectB );
void SplitNode( Node* a_node, Branch* a_branch, Node** a_newNode );
ELEMTYPEREAL RectSphericalVolume( Rect* a_rect );
ELEMTYPEREAL RectVolume( Rect* a_rect );
ELEMTYPEREAL CalcRectVolume( Rect* a_rect );
void GetBranches( Node* a_node, Branch* a_branch, PartitionVars* a_parVars );
void ChoosePartition( PartitionVars* a_parVars, int a_minFill );
void LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars );
void InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill );
void PickSeeds( PartitionVars* a_parVars );
void Classify( int a_index, int a_group, PartitionVars* a_parVars );
bool RemoveRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root );
bool RemoveRectRec( Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
ListNode** a_listNode );
ListNode* AllocListNode();
void FreeListNode( ListNode* a_listNode );
bool Overlap( Rect* a_rectA, Rect* a_rectB );
void ReInsert( Node* a_node, ListNode** a_listNode );
ELEMTYPE MinDist( const ELEMTYPE a_point[NUMDIMS], Rect* a_rect );
void InsertNNListSorted( std::vector<NNNode*>* nodeList, NNNode* newNode );
bool Search( Node * a_node, Rect * a_rect, int& a_foundCount, bool a_resultCallback(
DATATYPE a_data,
void* a_context ), void* a_context );
template <class VISITOR>
bool Search( Node* a_node, Rect* a_rect, VISITOR& a_visitor, int& a_foundCount )
{
ASSERT( a_node );
ASSERT( a_node->m_level >= 0 );
ASSERT( a_rect );
if( a_node->IsInternalNode() ) // This is an internal node in the tree
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
if( !Search( a_node->m_branch[index].m_child, a_rect, a_visitor, a_foundCount ) )
{
return false; // Don't continue searching
}
}
}
}
else // This is a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
DATATYPE& id = a_node->m_branch[index].m_data;
if( !a_visitor( id ) )
return false;
a_foundCount++;
}
}
}
return true; // Continue searching
}
void RemoveAllRec( Node* a_node );
void Reset();
void CountRec( Node* a_node, int& a_count );
bool SaveRec( Node* a_node, RTFileStream& a_stream );
bool LoadRec( Node* a_node, RTFileStream& a_stream );
Node* m_root; ///< Root of tree
ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions
};
// Because there is not stream support, this is a quick and dirty file I/O helper.
// Users will likely replace its usage with a Stream implementation from their favorite API.
class RTFileStream
{
FILE* m_file;
public:
RTFileStream()
{
m_file = NULL;
}
~RTFileStream()
{
Close();
}
bool OpenRead( const char* a_fileName )
{
m_file = fopen( a_fileName, "rb" );
if( !m_file )
{
return false;
}
return true;
}
bool OpenWrite( const char* a_fileName )
{
m_file = fopen( a_fileName, "wb" );
if( !m_file )
{
return false;
}
return true;
}
void Close()
{
if( m_file )
{
fclose( m_file );
m_file = NULL;
}
}
template <typename TYPE>
size_t Write( const TYPE& a_value )
{
ASSERT( m_file );
return fwrite( (void*) &a_value, sizeof(a_value), 1, m_file );
}
template <typename TYPE>
size_t WriteArray( const TYPE* a_array, int a_count )
{
ASSERT( m_file );
return fwrite( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file );
}
template <typename TYPE>
size_t Read( TYPE& a_value )
{
ASSERT( m_file );
return fread( (void*) &a_value, sizeof(a_value), 1, m_file );
}
template <typename TYPE>
size_t ReadArray( TYPE* a_array, int a_count )
{
ASSERT( m_file );
return fread( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file );
}
};
RTREE_TEMPLATE RTREE_QUAL::RTree()
{
ASSERT( MAXNODES > MINNODES );
ASSERT( MINNODES > 0 );
// We only support machine word size simple data type eg. integer index or object pointer.
// Since we are storing as union with non data branch
ASSERT( sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int) );
// Precomputed volumes of the unit spheres for the first few dimensions
const float UNIT_SPHERE_VOLUMES[] =
{
0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
};
m_root = AllocNode();
m_root->m_level = 0;
m_unitSphereVolume = (ELEMTYPEREAL) UNIT_SPHERE_VOLUMES[NUMDIMS];
}
RTREE_TEMPLATE
RTREE_QUAL::~RTree() {
Reset(); // Free, or reset node memory
}
RTREE_TEMPLATE
void RTREE_QUAL::Insert( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId )
{
#ifdef _DEBUG
for( int index = 0; index<NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis<NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
InsertRect( &rect, a_dataId, &m_root, 0 );
}
RTREE_TEMPLATE
void RTREE_QUAL::Remove( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId )
{
#ifdef _DEBUG
for( int index = 0; index<NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis<NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
RemoveRect( &rect, a_dataId, &m_root );
}
RTREE_TEMPLATE
int RTREE_QUAL::Search( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
bool a_resultCallback( DATATYPE a_data, void* a_context ),
void* a_context )
{
#ifdef _DEBUG
for( int index = 0; index<NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis<NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int foundCount = 0;
Search( m_root, &rect, foundCount, a_resultCallback, a_context );
return foundCount;
}
RTREE_TEMPLATE
DATATYPE RTREE_QUAL::NearestNeighbor( const ELEMTYPE a_point[NUMDIMS] )
{
return this->NearestNeighbor( a_point, 0, 0 );
}
RTREE_TEMPLATE
DATATYPE RTREE_QUAL::NearestNeighbor( const ELEMTYPE a_point[NUMDIMS],
ELEMTYPE a_squareDistanceCallback( const ELEMTYPE a_point[NUMDIMS], DATATYPE a_data ),
ELEMTYPE* a_squareDistance )
{
typedef typename std::vector<NNNode*>::iterator iterator;
std::vector<NNNode*> nodeList;
Node* node = m_root;
NNNode* closestNode = 0;
while( !closestNode || !closestNode->isLeaf )
{
//check every node on this level
for( int index = 0; index < node->m_count; ++index )
{
NNNode* newNode = new NNNode;
newNode->isLeaf = node->IsLeaf();
newNode->m_branch = node->m_branch[index];
if( newNode->isLeaf && a_squareDistanceCallback )
newNode->minDist = a_squareDistanceCallback( a_point, newNode->m_branch.m_data );
else
newNode->minDist = this->MinDist( a_point, &(node->m_branch[index].m_rect) );
//TODO: a custom list could be more efficient than a vector
this->InsertNNListSorted( &nodeList, newNode );
}
if( nodeList.size() == 0 )
{
return 0;
}
closestNode = nodeList.back();
node = closestNode->m_branch.m_child;
nodeList.pop_back();
free(closestNode);
}
// free memory used for remaining NNNodes in nodeList
for( iterator iter = nodeList.begin(); iter != nodeList.end(); ++iter )
{
NNNode* node = *iter;
free(node);
}
*a_squareDistance = closestNode->minDist;
return closestNode->m_branch.m_data;
}
RTREE_TEMPLATE
int RTREE_QUAL::Count()
{
int count = 0;
CountRec( m_root, count );
return count;
}
RTREE_TEMPLATE
void RTREE_QUAL::CountRec( Node* a_node, int& a_count )
{
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
CountRec( a_node->m_branch[index].m_child, a_count );
}
}
else // A leaf node
{
a_count += a_node->m_count;
}
}
RTREE_TEMPLATE
bool RTREE_QUAL::Load( const char* a_fileName )
{
RemoveAll(); // Clear existing tree
RTFileStream stream;
if( !stream.OpenRead( a_fileName ) )
{
return false;
}
bool result = Load( stream );
stream.Close();
return result;
};
RTREE_TEMPLATE
bool RTREE_QUAL::Load( RTFileStream& a_stream )
{
// Write some kind of header
int _dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
int _dataSize = sizeof(DATATYPE);
int _dataNumDims = NUMDIMS;
int _dataElemSize = sizeof(ELEMTYPE);
int _dataElemRealSize = sizeof(ELEMTYPEREAL);
int _dataMaxNodes = TMAXNODES;
int _dataMinNodes = TMINNODES;
int dataFileId = 0;
int dataSize = 0;
int dataNumDims = 0;
int dataElemSize = 0;
int dataElemRealSize = 0;
int dataMaxNodes = 0;
int dataMinNodes = 0;
a_stream.Read( dataFileId );
a_stream.Read( dataSize );
a_stream.Read( dataNumDims );
a_stream.Read( dataElemSize );
a_stream.Read( dataElemRealSize );
a_stream.Read( dataMaxNodes );
a_stream.Read( dataMinNodes );
bool result = false;
// Test if header was valid and compatible
if( (dataFileId == _dataFileId)
&& (dataSize == _dataSize)
&& (dataNumDims == _dataNumDims)
&& (dataElemSize == _dataElemSize)
&& (dataElemRealSize == _dataElemRealSize)
&& (dataMaxNodes == _dataMaxNodes)
&& (dataMinNodes == _dataMinNodes)
)
{
// Recursively load tree
result = LoadRec( m_root, a_stream );
}
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::LoadRec( Node* a_node, RTFileStream& a_stream )
{
a_stream.Read( a_node->m_level );
a_stream.Read( a_node->m_count );
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
Branch* curBranch = &a_node->m_branch[index];
a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS );
curBranch->m_child = AllocNode();
LoadRec( curBranch->m_child, a_stream );
}
}
else // A leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
Branch* curBranch = &a_node->m_branch[index];
a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS );
a_stream.Read( curBranch->m_data );
}
}
return true; // Should do more error checking on I/O operations
}
RTREE_TEMPLATE
bool RTREE_QUAL::Save( const char* a_fileName )
{
RTFileStream stream;
if( !stream.OpenWrite( a_fileName ) )
{
return false;
}
bool result = Save( stream );
stream.Close();
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::Save( RTFileStream& a_stream )
{
// Write some kind of header
int dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
int dataSize = sizeof(DATATYPE);
int dataNumDims = NUMDIMS;
int dataElemSize = sizeof(ELEMTYPE);
int dataElemRealSize = sizeof(ELEMTYPEREAL);
int dataMaxNodes = TMAXNODES;
int dataMinNodes = TMINNODES;
a_stream.Write( dataFileId );
a_stream.Write( dataSize );
a_stream.Write( dataNumDims );
a_stream.Write( dataElemSize );
a_stream.Write( dataElemRealSize );
a_stream.Write( dataMaxNodes );
a_stream.Write( dataMinNodes );
// Recursively save tree
bool result = SaveRec( m_root, a_stream );
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::SaveRec( Node* a_node, RTFileStream& a_stream )
{
a_stream.Write( a_node->m_level );
a_stream.Write( a_node->m_count );
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
Branch* curBranch = &a_node->m_branch[index];
a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS );
SaveRec( curBranch->m_child, a_stream );
}
}
else // A leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
Branch* curBranch = &a_node->m_branch[index];
a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS );
a_stream.Write( curBranch->m_data );
}
}
return true; // Should do more error checking on I/O operations
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAll()
{
// Delete all existing nodes
Reset();
m_root = AllocNode();
m_root->m_level = 0;
}
RTREE_TEMPLATE
void RTREE_QUAL::Reset()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
// Delete all existing nodes
RemoveAllRec( m_root );
#else // RTREE_DONT_USE_MEMPOOLS
// Just reset memory pools. We are not using complex types
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAllRec( Node* a_node )
{
ASSERT( a_node );
ASSERT( a_node->m_level >= 0 );
if( a_node->IsInternalNode() ) // This is an internal node in the tree
{
for( int index = 0; index < a_node->m_count; ++index )
{
RemoveAllRec( a_node->m_branch[index].m_child );
}
}
FreeNode( a_node );
}
RTREE_TEMPLATE
typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
{
Node* newNode;
#ifdef RTREE_DONT_USE_MEMPOOLS
newNode = new Node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
InitNode( newNode );
return newNode;
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeNode( Node* a_node )
{
ASSERT( a_node );
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
// Allocate space for a node in the list used in DeletRect to
// store Nodes that are too empty.
RTREE_TEMPLATE
typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
return new ListNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeListNode( ListNode* a_listNode )
{
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_listNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::InitNode( Node* a_node )
{
a_node->m_count = 0;
a_node->m_level = -1;
}
RTREE_TEMPLATE
void RTREE_QUAL::InitRect( Rect* a_rect )
{
for( int index = 0; index < NUMDIMS; ++index )
{
a_rect->m_min[index] = (ELEMTYPE) 0;
a_rect->m_max[index] = (ELEMTYPE) 0;
}
}
// Inserts a new data rectangle into the index structure.
// Recursively descends tree, propagates splits back up.
// Returns 0 if node was not split. Old node updated.
// If node was split, returns 1 and sets the pointer pointed to by
// new_node to point to the new node. Old node updated to become one of two.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRectRec( Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
Node** a_newNode,
int a_level )
{
ASSERT( a_rect && a_node && a_newNode );
ASSERT( a_level >= 0 && a_level <= a_node->m_level );
int index;
Branch branch;
Node* otherNode;
// Still above level for insertion, go down tree recursively
if( a_node->m_level > a_level )
{
index = PickBranch( a_rect, a_node );
if( !InsertRectRec( a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level ) )
{
// Child was not split
a_node->m_branch[index].m_rect =
CombineRect( a_rect, &(a_node->m_branch[index].m_rect) );
return false;
}
else // Child was split
{
a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child );
branch.m_child = otherNode;
branch.m_rect = NodeCover( otherNode );
return AddBranch( &branch, a_node, a_newNode );
}
}
else if( a_node->m_level == a_level ) // Have reached level for insertion. Add rect, split if necessary
{
branch.m_rect = *a_rect;
branch.m_child = (Node*) a_id;
// Child field of leaves contains id of data record
return AddBranch( &branch, a_node, a_newNode );
}
else
{
// Should never occur
ASSERT( 0 );
return false;
}
}
// Insert a data rectangle into an index structure.
// InsertRect provides for splitting the root;
// returns 1 if root was split, 0 if it was not.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
// InsertRect2 does the recursion.
//
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level )
{
ASSERT( a_rect && a_root );
ASSERT( a_level >= 0 && a_level <= (*a_root)->m_level );
#ifdef _DEBUG
for( int index = 0; index < NUMDIMS; ++index )
{
ASSERT( a_rect->m_min[index] <= a_rect->m_max[index] );
}
#endif // _DEBUG
Node* newRoot;
Node* newNode;
Branch branch;
if( InsertRectRec( a_rect, a_id, *a_root, &newNode, a_level ) ) // Root split
{
newRoot = AllocNode(); // Grow tree taller and new root
newRoot->m_level = (*a_root)->m_level + 1;
branch.m_rect = NodeCover( *a_root );
branch.m_child = *a_root;
AddBranch( &branch, newRoot, NULL );
branch.m_rect = NodeCover( newNode );
branch.m_child = newNode;
AddBranch( &branch, newRoot, NULL );
*a_root = newRoot;
return true;
}
return false;
}
// Find the smallest rectangle that includes all rectangles in branches of a node.
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover( Node* a_node )
{
ASSERT( a_node );
int firstTime = true;
Rect rect;
InitRect( &rect );
for( int index = 0; index < a_node->m_count; ++index )
{
if( firstTime )
{
rect = a_node->m_branch[index].m_rect;
firstTime = false;
}
else
{
rect = CombineRect( &rect, &(a_node->m_branch[index].m_rect) );
}
}
return rect;
}
// Add a branch to a node. Split the node if necessary.
// Returns 0 if node not split. Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
RTREE_TEMPLATE
bool RTREE_QUAL::AddBranch( Branch* a_branch, Node* a_node, Node** a_newNode )
{
ASSERT( a_branch );
ASSERT( a_node );
if( a_node->m_count < MAXNODES ) // Split won't be necessary
{
a_node->m_branch[a_node->m_count] = *a_branch;
++a_node->m_count;
return false;
}
else
{
ASSERT( a_newNode );
SplitNode( a_node, a_branch, a_newNode );
return true;
}
}
// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has changed
RTREE_TEMPLATE
void RTREE_QUAL::DisconnectBranch( Node* a_node, int a_index )
{
ASSERT( a_node && (a_index >= 0) && (a_index < MAXNODES) );
ASSERT( a_node->m_count > 0 );
// Remove element by swapping with the last element to prevent gaps in array
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
--a_node->m_count;
}
// Pick a branch. Pick the one that will need the smallest increase
// in area to accomodate the new rectangle. This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
RTREE_TEMPLATE
int RTREE_QUAL::PickBranch( Rect* a_rect, Node* a_node )
{
ASSERT( a_rect && a_node );
bool firstTime = true;
ELEMTYPEREAL increase;
ELEMTYPEREAL bestIncr = (ELEMTYPEREAL) -1;
ELEMTYPEREAL area;
ELEMTYPEREAL bestArea = 0;
int best = 0;
Rect tempRect;
for( int index = 0; index < a_node->m_count; ++index )
{
Rect* curRect = &a_node->m_branch[index].m_rect;
area = CalcRectVolume( curRect );
tempRect = CombineRect( a_rect, curRect );
increase = CalcRectVolume( &tempRect ) - area;
if( (increase < bestIncr) || firstTime )
{
best = index;
bestArea = area;
bestIncr = increase;
firstTime = false;
}
else if( (increase == bestIncr) && (area < bestArea) )
{
best = index;
bestArea = area;
bestIncr = increase;
}
}
return best;
}
// Combine two rectangles into larger one containing both
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect( Rect* a_rectA, Rect* a_rectB )
{
ASSERT( a_rectA && a_rectB );
Rect newRect;
for( int index = 0; index < NUMDIMS; ++index )
{
newRect.m_min[index] = rMin( a_rectA->m_min[index], a_rectB->m_min[index] );
newRect.m_max[index] = rMax( a_rectA->m_max[index], a_rectB->m_max[index] );
}
return newRect;
}
// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
RTREE_TEMPLATE
void RTREE_QUAL::SplitNode( Node* a_node, Branch* a_branch, Node** a_newNode )
{
ASSERT( a_node );
ASSERT( a_branch );
// Could just use local here, but member or external is faster since it is reused
PartitionVars localVars;
PartitionVars* parVars = &localVars;
int level;
// Load all the branches into a buffer, initialize old node
level = a_node->m_level;
GetBranches( a_node, a_branch, parVars );
// Find partition
ChoosePartition( parVars, MINNODES );
// Put branches from buffer into 2 nodes according to chosen partition
*a_newNode = AllocNode();
(*a_newNode)->m_level = a_node->m_level = level;
LoadNodes( a_node, *a_newNode, parVars );
ASSERT( (a_node->m_count + (*a_newNode)->m_count) == parVars->m_total );
}
// Calculate the n-dimensional volume of a rectangle
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectVolume( Rect* a_rect )
{
ASSERT( a_rect );
ELEMTYPEREAL volume = (ELEMTYPEREAL) 1;
for( int index = 0; index<NUMDIMS; ++index )
{
volume *= a_rect->m_max[index] - a_rect->m_min[index];
}
ASSERT( volume >= (ELEMTYPEREAL) 0 );
return volume;
}
// The exact volume of the bounding sphere for the given Rect
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume( Rect* a_rect )
{
ASSERT( a_rect );
ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL) 0;
ELEMTYPEREAL radius;
for( int index = 0; index < NUMDIMS; ++index )
{
ELEMTYPEREAL halfExtent =
( (ELEMTYPEREAL) a_rect->m_max[index] - (ELEMTYPEREAL) a_rect->m_min[index] ) * 0.5f;
sumOfSquares += halfExtent * halfExtent;
}
radius = (ELEMTYPEREAL) sqrt( sumOfSquares );
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
if( NUMDIMS == 3 )
{
return radius * radius * radius * m_unitSphereVolume;
}
else if( NUMDIMS == 2 )
{
return radius * radius * m_unitSphereVolume;
}
else
{
return (ELEMTYPEREAL) (pow( radius, NUMDIMS ) * m_unitSphereVolume);
}
}
// Use one of the methods to calculate retangle volume
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume( Rect* a_rect )
{
#ifdef RTREE_USE_SPHERICAL_VOLUME
return RectSphericalVolume( a_rect ); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
return RectVolume( a_rect ); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}
// Load branch buffer with branches from full node plus the extra branch.
RTREE_TEMPLATE
void RTREE_QUAL::GetBranches( Node* a_node, Branch* a_branch, PartitionVars* a_parVars )
{
ASSERT( a_node );
ASSERT( a_branch );
ASSERT( a_node->m_count == MAXNODES );
// Load the branch buffer
for( int index = 0; index < MAXNODES; ++index )
{
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
}
a_parVars->m_branchBuf[MAXNODES] = *a_branch;
a_parVars->m_branchCount = MAXNODES + 1;
// Calculate rect containing all in the set
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
for( int index = 1; index < MAXNODES + 1; ++index )
{
a_parVars->m_coverSplit =
CombineRect( &a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect );
}
a_parVars->m_coverSplitArea = CalcRectVolume( &a_parVars->m_coverSplit );
InitNode( a_node );
}
// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition( PartitionVars* a_parVars, int a_minFill )
{
ASSERT( a_parVars );
ELEMTYPEREAL biggestDiff;
int group, chosen = 0, betterGroup = 0;
InitParVars( a_parVars, a_parVars->m_branchCount, a_minFill );
PickSeeds( a_parVars );
while( ( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total )
&& ( a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill) )
&& ( a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill) ) )
{
biggestDiff = (ELEMTYPEREAL) -1;
for( int index = 0; index<a_parVars->m_total; ++index )
{
if( !a_parVars->m_taken[index] )
{
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
Rect rect0 = CombineRect( curRect, &a_parVars->m_cover[0] );
Rect rect1 = CombineRect( curRect, &a_parVars->m_cover[1] );
ELEMTYPEREAL growth0 = CalcRectVolume( &rect0 ) - a_parVars->m_area[0];
ELEMTYPEREAL growth1 = CalcRectVolume( &rect1 ) - a_parVars->m_area[1];
ELEMTYPEREAL diff = growth1 - growth0;
if( diff >= 0 )
{
group = 0;
}
else
{
group = 1;
diff = -diff;
}
if( diff > biggestDiff )
{
biggestDiff = diff;
chosen = index;
betterGroup = group;
}
else if( (diff == biggestDiff)
&& (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]) )
{
chosen = index;
betterGroup = group;
}
}
}
Classify( chosen, betterGroup, a_parVars );
}
// If one group too full, put remaining rects in the other
if( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total )
{
if( a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill )
{
group = 1;
}
else
{
group = 0;
}
for( int index = 0; index<a_parVars->m_total; ++index )
{
if( !a_parVars->m_taken[index] )
{
Classify( index, group, a_parVars );
}
}
}
ASSERT( (a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total );
ASSERT( (a_parVars->m_count[0] >= a_parVars->m_minFill)
&& (a_parVars->m_count[1] >= a_parVars->m_minFill) );
}
// Copy branches from the buffer into two nodes according to the partition.
RTREE_TEMPLATE
void RTREE_QUAL::LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars )
{
ASSERT( a_nodeA );
ASSERT( a_nodeB );
ASSERT( a_parVars );
for( int index = 0; index < a_parVars->m_total; ++index )
{
ASSERT( a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1 );
if( a_parVars->m_partition[index] == 0 )
{
AddBranch( &a_parVars->m_branchBuf[index], a_nodeA, NULL );
}
else if( a_parVars->m_partition[index] == 1 )
{
AddBranch( &a_parVars->m_branchBuf[index], a_nodeB, NULL );
}
}
}
// Initialize a PartitionVars structure.
RTREE_TEMPLATE
void RTREE_QUAL::InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill )
{
ASSERT( a_parVars );
a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL) 0;
a_parVars->m_total = a_maxRects;
a_parVars->m_minFill = a_minFill;
for( int index = 0; index < a_maxRects; ++index )
{
a_parVars->m_taken[index] = false;
a_parVars->m_partition[index] = -1;
}
}
RTREE_TEMPLATE
void RTREE_QUAL::PickSeeds( PartitionVars* a_parVars )
{
int seed0 = 0, seed1 = 0;
ELEMTYPEREAL worst, waste;
ELEMTYPEREAL area[MAXNODES + 1];
for( int index = 0; index<a_parVars->m_total; ++index )
{
area[index] = CalcRectVolume( &a_parVars->m_branchBuf[index].m_rect );
}
worst = -a_parVars->m_coverSplitArea - 1;
for( int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA )
{
for( int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB )
{
Rect oneRect = CombineRect( &a_parVars->m_branchBuf[indexA].m_rect,
&a_parVars->m_branchBuf[indexB].m_rect );
waste = CalcRectVolume( &oneRect ) - area[indexA] - area[indexB];
if( waste >= worst )
{
worst = waste;
seed0 = indexA;
seed1 = indexB;
}
}
}
Classify( seed0, 0, a_parVars );
Classify( seed1, 1, a_parVars );
}
// Put a branch in one of the groups.
RTREE_TEMPLATE
void RTREE_QUAL::Classify( int a_index, int a_group, PartitionVars* a_parVars )
{
ASSERT( a_parVars );
ASSERT( !a_parVars->m_taken[a_index] );
a_parVars->m_partition[a_index] = a_group;
a_parVars->m_taken[a_index] = true;
if( a_parVars->m_count[a_group] == 0 )
{
a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
}
else
{
a_parVars->m_cover[a_group] = CombineRect( &a_parVars->m_branchBuf[a_index].m_rect,
&a_parVars->m_cover[a_group] );
}
a_parVars->m_area[a_group] = CalcRectVolume( &a_parVars->m_cover[a_group] );
++a_parVars->m_count[a_group];
}
// Delete a data rectangle from an index structure.
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
// Returns 1 if record not found, 0 if success.
// RemoveRect provides for eliminating the root.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root )
{
ASSERT( a_rect && a_root );
ASSERT( *a_root );
Node* tempNode;
ListNode* reInsertList = NULL;
if( !RemoveRectRec( a_rect, a_id, *a_root, &reInsertList ) )
{
// Found and deleted a data item
// Reinsert any branches from eliminated nodes
while( reInsertList )
{
tempNode = reInsertList->m_node;
for( int index = 0; index < tempNode->m_count; ++index )
{
InsertRect( &(tempNode->m_branch[index].m_rect),
tempNode->m_branch[index].m_data,
a_root,
tempNode->m_level );
}
ListNode* remLNode = reInsertList;
reInsertList = reInsertList->m_next;
FreeNode( remLNode->m_node );
FreeListNode( remLNode );
}
// Check for redundant root (not leaf, 1 child) and eliminate
if( (*a_root)->m_count == 1 && (*a_root)->IsInternalNode() )
{
tempNode = (*a_root)->m_branch[0].m_child;
ASSERT( tempNode );
FreeNode( *a_root );
*a_root = tempNode;
}
return false;
}
else
{
return true;
}
}
// Delete a rectangle from non-root part of an index structure.
// Called by RemoveRect. Descends tree recursively,
// merges branches on the way back up.
// Returns 1 if record not found, 0 if success.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRectRec( Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
ListNode** a_listNode )
{
ASSERT( a_rect && a_node && a_listNode );
ASSERT( a_node->m_level >= 0 );
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &(a_node->m_branch[index].m_rect) ) )
{
if( !RemoveRectRec( a_rect, a_id, a_node->m_branch[index].m_child, a_listNode ) )
{
if( a_node->m_branch[index].m_child->m_count >= MINNODES )
{
// child removed, just resize parent rect
a_node->m_branch[index].m_rect =
NodeCover( a_node->m_branch[index].m_child );
}
else
{
// child removed, not enough entries in node, eliminate node
ReInsert( a_node->m_branch[index].m_child, a_listNode );
DisconnectBranch( a_node, index ); // Must return after this call as count has changed
}
return false;
}
}
}
return true;
}
else // A leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( a_node->m_branch[index].m_child == (Node*) a_id )
{
DisconnectBranch( a_node, index ); // Must return after this call as count has changed
return false;
}
}
return true;
}
}
// Decide whether two rectangles overlap.
RTREE_TEMPLATE
bool RTREE_QUAL::Overlap( Rect* a_rectA, Rect* a_rectB )
{
ASSERT( a_rectA && a_rectB );
for( int index = 0; index < NUMDIMS; ++index )
{
if( a_rectA->m_min[index] > a_rectB->m_max[index]
|| a_rectB->m_min[index] > a_rectA->m_max[index] )
{
return false;
}
}
return true;
}
// Add a node to the reinsertion list. All its branches will later
// be reinserted into the index structure.
RTREE_TEMPLATE
void RTREE_QUAL::ReInsert( Node* a_node, ListNode** a_listNode )
{
ListNode* newListNode;
newListNode = AllocListNode();
newListNode->m_node = a_node;
newListNode->m_next = *a_listNode;
*a_listNode = newListNode;
}
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
RTREE_TEMPLATE
bool RTREE_QUAL::Search( Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(
DATATYPE a_data,
void* a_context ), void* a_context )
{
ASSERT( a_node );
ASSERT( a_node->m_level >= 0 );
ASSERT( a_rect );
if( a_node->IsInternalNode() ) // This is an internal node in the tree
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
if( !Search( a_node->m_branch[index].m_child, a_rect, a_foundCount,
a_resultCallback, a_context ) )
{
return false; // Don't continue searching
}
}
}
}
else // This is a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
DATATYPE& id = a_node->m_branch[index].m_data;
// NOTE: There are different ways to return results. Here's where to modify
if( &a_resultCallback )
{
++a_foundCount;
if( !a_resultCallback( id, a_context ) )
{
return false; // Don't continue searching
}
}
}
}
}
return true; // Continue searching
}
//calculate the minimum distance between a point and a rectangle as defined by Manolopoulos et al.
//it uses the square distance to avoid the use of ELEMTYPEREAL values, which are slower.
RTREE_TEMPLATE
ELEMTYPE RTREE_QUAL::MinDist( const ELEMTYPE a_point[NUMDIMS], Rect* a_rect )
{
ELEMTYPE *q, *s, *t;
q = (ELEMTYPE*) a_point;
s = a_rect->m_min;
t = a_rect->m_max;
int minDist = 0;
for( int index = 0; index < NUMDIMS; index++ )
{
int r = q[index];
if( q[index] < s[index] )
{
r = s[index];
}
else if( q[index] >t[index] )
{
r = t[index];
}
int addend = q[index] - r;
minDist += addend * addend;
}
return minDist;
}
//insert a NNNode in a list sorted by its minDist (desc.)
RTREE_TEMPLATE
void RTREE_QUAL::InsertNNListSorted( std::vector<NNNode*>* nodeList, NNNode* newNode )
{
typedef typename std::vector<NNNode*>::iterator iterator;
iterator iter = nodeList->begin();
while( iter != nodeList->end() && (*iter)->minDist > newNode->minDist )
{
++iter;
}
nodeList->insert(iter, newNode);
}
#undef RTREE_TEMPLATE
#undef RTREE_QUAL
#undef RTREE_SEARCH_TEMPLATE
#undef RTREE_SEARCH_QUAL
#endif // RTREE_H
|