summaryrefslogtreecommitdiff
path: root/include/geometry/rtree.h
diff options
context:
space:
mode:
authorsaurabhb172020-02-26 16:14:17 +0530
committerGitHub2020-02-26 16:14:17 +0530
commit003d02608917e7a69d1a98438837e94ccf68352a (patch)
tree1392c90227aeea231c1d86371131e04c40382918 /include/geometry/rtree.h
parent886d9cb772e81d2e5262284bc3082664f084337f (diff)
parente255d0622297488c1c52755be670733418c994cf (diff)
downloadKiCad-eSim-003d02608917e7a69d1a98438837e94ccf68352a.tar.gz
KiCad-eSim-003d02608917e7a69d1a98438837e94ccf68352a.tar.bz2
KiCad-eSim-003d02608917e7a69d1a98438837e94ccf68352a.zip
Merge pull request #3 from saurabhb17/master
secondary files
Diffstat (limited to 'include/geometry/rtree.h')
-rw-r--r--include/geometry/rtree.h1905
1 files changed, 1905 insertions, 0 deletions
diff --git a/include/geometry/rtree.h b/include/geometry/rtree.h
new file mode 100644
index 0000000..35ccadb
--- /dev/null
+++ b/include/geometry/rtree.h
@@ -0,0 +1,1905 @@
+//TITLE
+//
+// R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
+//
+//DESCRIPTION
+//
+// A C++ templated version of the RTree algorithm.
+// For more information please read the comments in RTree.h
+//
+//AUTHORS
+//
+// * 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
+// * 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
+// * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
+// * 2004 Templated C++ port by Greg Douglas
+// * 2013 CERN (www.cern.ch)
+//
+//LICENSE:
+//
+// Entirely free for all uses. Enjoy!
+
+#ifndef RTREE_H
+#define RTREE_H
+
+// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.
+
+// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
+#include <stdio.h>
+#include <math.h>
+#include <assert.h>
+#include <stdlib.h>
+
+#define ASSERT assert // RTree uses ASSERT( condition )
+#ifndef rMin
+ #define rMin std::min
+#endif // rMin
+#ifndef rMax
+ #define rMax std::max
+#endif // rMax
+
+//
+// RTree.h
+//
+
+#define RTREE_TEMPLATE template <class DATATYPE, class ELEMTYPE, int NUMDIMS, \
+ class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
+#define RTREE_SEARCH_TEMPLATE template <class DATATYPE, class ELEMTYPE, int NUMDIMS, \
+ class ELEMTYPEREAL, int TMAXNODES, int TMINNODES, class VISITOR>
+#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
+ TMINNODES>
+#define RTREE_SEARCH_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
+ TMINNODES, VISITOR>
+
+#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
+#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
+
+// Fwd decl
+class RTFileStream; // File I/O helper class, look below for implementation and notes.
+
+
+/// \class RTree
+/// Implementation of RTree, a multidimensional bounding rectangle tree.
+/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
+///
+/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
+///
+/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
+/// ELEMTYPE Type of element such as int or float
+/// NUMDIMS Number of dimensions such as 2 or 3
+/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
+///
+/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
+/// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
+/// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
+/// array similar to MFC CArray or STL Vector for returning search query result.
+///
+template <class DATATYPE, class ELEMTYPE, int NUMDIMS,
+ class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
+class RTree
+{
+protected:
+
+ struct Node; // Fwd decl. Used by other internal structs and iterator
+public:
+
+ // These constant must be declared after Branch and before Node struct
+ // Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier.
+ enum {
+ MAXNODES = TMAXNODES, ///< Max elements in node
+ MINNODES = TMINNODES, ///< Min elements in node
+ };
+
+ struct Statistics {
+ int maxDepth;
+ int avgDepth;
+
+ int maxNodeLoad;
+ int avgNodeLoad;
+ int totalItems;
+ };
+
+public:
+
+ RTree();
+ virtual ~RTree();
+
+ /// Insert entry
+ /// \param a_min Min of bounding rect
+ /// \param a_max Max of bounding rect
+ /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
+ void Insert( const ELEMTYPE a_min[NUMDIMS],
+ const ELEMTYPE a_max[NUMDIMS],
+ const DATATYPE& a_dataId );
+
+ /// Remove entry
+ /// \param a_min Min of bounding rect
+ /// \param a_max Max of bounding rect
+ /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
+ void Remove( const ELEMTYPE a_min[NUMDIMS],
+ const ELEMTYPE a_max[NUMDIMS],
+ const DATATYPE& a_dataId );
+
+ /// Find all within search rectangle
+ /// \param a_min Min of search bounding rect
+ /// \param a_max Max of search bounding rect
+ /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
+ /// \param a_context User context to pass as parameter to a_resultCallback
+ /// \return Returns the number of entries found
+ int Search( const ELEMTYPE a_min[NUMDIMS],
+ const ELEMTYPE a_max[NUMDIMS],
+ bool a_resultCallback( DATATYPE a_data, void* a_context ),
+ void* a_context );
+
+ template <class VISITOR>
+ int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], VISITOR& a_visitor )
+ {
+ #ifdef _DEBUG
+
+ for( int index = 0; index<NUMDIMS; ++index )
+ {
+ ASSERT( a_min[index] <= a_max[index] );
+ }
+
+ #endif // _DEBUG
+
+ Rect rect;
+
+ for( int axis = 0; axis<NUMDIMS; ++axis )
+ {
+ rect.m_min[axis] = a_min[axis];
+ rect.m_max[axis] = a_max[axis];
+ }
+
+
+ // NOTE: May want to return search result another way, perhaps returning the number of found elements here.
+ int cnt;
+
+ Search( m_root, &rect, a_visitor, cnt );
+
+ return cnt;
+ }
+
+ /// Calculate Statistics
+
+ Statistics CalcStats();
+
+ /// Remove all entries from tree
+ void RemoveAll();
+
+ /// Count the data elements in this container. This is slow as no internal counter is maintained.
+ int Count();
+
+ /// Load tree contents from file
+ bool Load( const char* a_fileName );
+
+ /// Load tree contents from stream
+ bool Load( RTFileStream& a_stream );
+
+
+ /// Save tree contents to file
+ bool Save( const char* a_fileName );
+
+ /// Save tree contents to stream
+ bool Save( RTFileStream& a_stream );
+
+ /// Find the nearest neighbor of a specific point.
+ /// It uses the MINDIST method, simplifying the one from "R-Trees: Theory and Applications" by Yannis Manolopoulos et al.
+ /// The bounding rectangle is used to calculate the distance to the DATATYPE.
+ /// \param a_point point to start the search
+ /// \return Returns the DATATYPE located closest to a_point, 0 if the tree is empty.
+ DATATYPE NearestNeighbor( const ELEMTYPE a_point[NUMDIMS] );
+
+ /// Find the nearest neighbor of a specific point.
+ /// It uses the MINDIST method, simplifying the one from "R-Trees: Theory and Applications" by Yannis Manolopoulos et al.
+ /// It receives a callback function to calculate the distance to a DATATYPE object, instead of using the bounding rectangle.
+ /// \param a_point point to start the search
+ /// \param a_squareDistanceCallback function that performs the square distance calculation for the selected DATATYPE.
+ /// \param a_squareDistance Pointer in which the square distance to the nearest neighbour will be returned.
+ /// \return Returns the DATATYPE located closest to a_point, 0 if the tree is empty.
+ DATATYPE NearestNeighbor( const ELEMTYPE a_point[NUMDIMS],
+ ELEMTYPE a_squareDistanceCallback( const ELEMTYPE a_point[NUMDIMS], DATATYPE a_data ),
+ ELEMTYPE* a_squareDistance );
+
+ /// Iterator is not remove safe.
+ class Iterator
+ {
+ private:
+
+ enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node
+
+ struct StackElement
+ {
+ Node* m_node;
+ int m_branchIndex;
+ };
+ public:
+
+ Iterator() { Init(); }
+
+ ~Iterator() { }
+
+ /// Is iterator invalid
+ bool IsNull() { return m_tos <= 0; }
+
+ /// Is iterator pointing to valid data
+ bool IsNotNull() { return m_tos > 0; }
+
+ /// Access the current data element. Caller must be sure iterator is not NULL first.
+ DATATYPE& operator*()
+ {
+ ASSERT( IsNotNull() );
+ StackElement& curTos = m_stack[m_tos - 1];
+ return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
+ }
+
+ /// Access the current data element. Caller must be sure iterator is not NULL first.
+ const DATATYPE& operator*() const
+ {
+ ASSERT( IsNotNull() );
+ StackElement& curTos = m_stack[m_tos - 1];
+ return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
+ }
+
+ /// Find the next data element
+ bool operator++() { return FindNextData(); }
+
+ /// Get the bounds for this node
+ void GetBounds( ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS] )
+ {
+ ASSERT( IsNotNull() );
+ StackElement& curTos = m_stack[m_tos - 1];
+ Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
+
+ for( int index = 0; index < NUMDIMS; ++index )
+ {
+ a_min[index] = curBranch.m_rect.m_min[index];
+ a_max[index] = curBranch.m_rect.m_max[index];
+ }
+ }
+
+ private:
+
+ /// Reset iterator
+ void Init() { m_tos = 0; }
+
+ /// Find the next data element in the tree (For internal use only)
+ bool FindNextData()
+ {
+ for( ; ; )
+ {
+ if( m_tos <= 0 )
+ {
+ return false;
+ }
+
+ StackElement curTos = Pop(); // Copy stack top cause it may change as we use it
+
+ if( curTos.m_node->IsLeaf() )
+ {
+ // Keep walking through data while we can
+ if( curTos.m_branchIndex + 1 < curTos.m_node->m_count )
+ {
+ // There is more data, just point to the next one
+ Push( curTos.m_node, curTos.m_branchIndex + 1 );
+ return true;
+ }
+
+ // No more data, so it will fall back to previous level
+ }
+ else
+ {
+ if( curTos.m_branchIndex + 1 < curTos.m_node->m_count )
+ {
+ // Push sibling on for future tree walk
+ // This is the 'fall back' node when we finish with the current level
+ Push( curTos.m_node, curTos.m_branchIndex + 1 );
+ }
+
+ // Since cur node is not a leaf, push first of next level to get deeper into the tree
+ Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
+ Push( nextLevelnode, 0 );
+
+ // If we pushed on a new leaf, exit as the data is ready at TOS
+ if( nextLevelnode->IsLeaf() )
+ {
+ return true;
+ }
+ }
+ }
+ }
+
+ /// Push node and branch onto iteration stack (For internal use only)
+ void Push( Node* a_node, int a_branchIndex )
+ {
+ m_stack[m_tos].m_node = a_node;
+ m_stack[m_tos].m_branchIndex = a_branchIndex;
+ ++m_tos;
+ ASSERT( m_tos <= MAX_STACK );
+ }
+
+ /// Pop element off iteration stack (For internal use only)
+ StackElement& Pop()
+ {
+ ASSERT( m_tos > 0 );
+ --m_tos;
+ return m_stack[m_tos];
+ }
+
+ StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion
+ int m_tos; ///< Top Of Stack index
+
+ friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner
+ };
+
+
+ /// Get 'first' for iteration
+ void GetFirst( Iterator& a_it )
+ {
+ a_it.Init();
+ Node* first = m_root;
+
+ while( first )
+ {
+ if( first->IsInternalNode() && first->m_count > 1 )
+ {
+ a_it.Push( first, 1 ); // Descend sibling branch later
+ }
+ else if( first->IsLeaf() )
+ {
+ if( first->m_count )
+ {
+ a_it.Push( first, 0 );
+ }
+
+ break;
+ }
+
+ first = first->m_branch[0].m_child;
+ }
+ }
+
+ /// Get Next for iteration
+ void GetNext( Iterator& a_it ) { ++a_it; }
+
+ /// Is iterator NULL, or at end?
+ bool IsNull( Iterator& a_it ) { return a_it.IsNull(); }
+
+ /// Get object at iterator position
+ DATATYPE& GetAt( Iterator& a_it ) { return *a_it; }
+protected:
+
+ /// Minimal bounding rectangle (n-dimensional)
+ struct Rect
+ {
+ ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
+ ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
+ };
+
+ /// May be data or may be another subtree
+ /// The parents level determines this.
+ /// If the parents level is 0, then this is data
+ struct Branch
+ {
+ Rect m_rect; ///< Bounds
+ union
+ {
+ Node* m_child; ///< Child node
+ DATATYPE m_data; ///< Data Id or Ptr
+ };
+ };
+
+ /// Node for each branch level
+ struct Node
+ {
+ bool IsInternalNode() { return m_level > 0; } // Not a leaf, but a internal node
+ bool IsLeaf() { return m_level == 0; } // A leaf, contains data
+
+ int m_count; ///< Count
+ int m_level; ///< Leaf is zero, others positive
+ Branch m_branch[MAXNODES]; ///< Branch
+ };
+
+ /// A link list of nodes for reinsertion after a delete operation
+ struct ListNode
+ {
+ ListNode* m_next; ///< Next in list
+ Node* m_node; ///< Node
+ };
+
+ /// Variables for finding a split partition
+ struct PartitionVars
+ {
+ int m_partition[MAXNODES + 1];
+ int m_total;
+ int m_minFill;
+ int m_taken[MAXNODES + 1];
+ int m_count[2];
+ Rect m_cover[2];
+ ELEMTYPEREAL m_area[2];
+
+ Branch m_branchBuf[MAXNODES + 1];
+ int m_branchCount;
+ Rect m_coverSplit;
+ ELEMTYPEREAL m_coverSplitArea;
+ };
+
+ /// Data structure used for Nearest Neighbor search implementation
+ struct NNNode
+ {
+ Branch m_branch;
+ ELEMTYPE minDist;
+ bool isLeaf;
+ };
+
+ Node* AllocNode();
+ void FreeNode( Node* a_node );
+ void InitNode( Node* a_node );
+ void InitRect( Rect* a_rect );
+ bool InsertRectRec( Rect* a_rect,
+ const DATATYPE& a_id,
+ Node* a_node,
+ Node** a_newNode,
+ int a_level );
+ bool InsertRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level );
+ Rect NodeCover( Node* a_node );
+ bool AddBranch( Branch* a_branch, Node* a_node, Node** a_newNode );
+ void DisconnectBranch( Node* a_node, int a_index );
+ int PickBranch( Rect* a_rect, Node* a_node );
+ Rect CombineRect( Rect* a_rectA, Rect* a_rectB );
+ void SplitNode( Node* a_node, Branch* a_branch, Node** a_newNode );
+ ELEMTYPEREAL RectSphericalVolume( Rect* a_rect );
+ ELEMTYPEREAL RectVolume( Rect* a_rect );
+ ELEMTYPEREAL CalcRectVolume( Rect* a_rect );
+ void GetBranches( Node* a_node, Branch* a_branch, PartitionVars* a_parVars );
+ void ChoosePartition( PartitionVars* a_parVars, int a_minFill );
+ void LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars );
+ void InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill );
+ void PickSeeds( PartitionVars* a_parVars );
+ void Classify( int a_index, int a_group, PartitionVars* a_parVars );
+ bool RemoveRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root );
+ bool RemoveRectRec( Rect* a_rect,
+ const DATATYPE& a_id,
+ Node* a_node,
+ ListNode** a_listNode );
+ ListNode* AllocListNode();
+ void FreeListNode( ListNode* a_listNode );
+ bool Overlap( Rect* a_rectA, Rect* a_rectB );
+ void ReInsert( Node* a_node, ListNode** a_listNode );
+ ELEMTYPE MinDist( const ELEMTYPE a_point[NUMDIMS], Rect* a_rect );
+ void InsertNNListSorted( std::vector<NNNode*>* nodeList, NNNode* newNode );
+
+ bool Search( Node * a_node, Rect * a_rect, int& a_foundCount, bool a_resultCallback(
+ DATATYPE a_data,
+ void* a_context ), void* a_context );
+
+ template <class VISITOR>
+ bool Search( Node* a_node, Rect* a_rect, VISITOR& a_visitor, int& a_foundCount )
+ {
+ ASSERT( a_node );
+ ASSERT( a_node->m_level >= 0 );
+ ASSERT( a_rect );
+
+ if( a_node->IsInternalNode() ) // This is an internal node in the tree
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
+ {
+ if( !Search( a_node->m_branch[index].m_child, a_rect, a_visitor, a_foundCount ) )
+ {
+ return false; // Don't continue searching
+ }
+ }
+ }
+ }
+ else // This is a leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
+ {
+ DATATYPE& id = a_node->m_branch[index].m_data;
+
+ if( !a_visitor( id ) )
+ return false;
+
+ a_foundCount++;
+ }
+ }
+ }
+
+ return true; // Continue searching
+ }
+
+ void RemoveAllRec( Node* a_node );
+ void Reset();
+ void CountRec( Node* a_node, int& a_count );
+
+ bool SaveRec( Node* a_node, RTFileStream& a_stream );
+ bool LoadRec( Node* a_node, RTFileStream& a_stream );
+
+ Node* m_root; ///< Root of tree
+ ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions
+};
+
+
+// Because there is not stream support, this is a quick and dirty file I/O helper.
+// Users will likely replace its usage with a Stream implementation from their favorite API.
+class RTFileStream
+{
+ FILE* m_file;
+public:
+
+
+ RTFileStream()
+ {
+ m_file = NULL;
+ }
+
+ ~RTFileStream()
+ {
+ Close();
+ }
+
+ bool OpenRead( const char* a_fileName )
+ {
+ m_file = fopen( a_fileName, "rb" );
+
+ if( !m_file )
+ {
+ return false;
+ }
+
+ return true;
+ }
+
+ bool OpenWrite( const char* a_fileName )
+ {
+ m_file = fopen( a_fileName, "wb" );
+
+ if( !m_file )
+ {
+ return false;
+ }
+
+ return true;
+ }
+
+ void Close()
+ {
+ if( m_file )
+ {
+ fclose( m_file );
+ m_file = NULL;
+ }
+ }
+
+ template <typename TYPE>
+ size_t Write( const TYPE& a_value )
+ {
+ ASSERT( m_file );
+ return fwrite( (void*) &a_value, sizeof(a_value), 1, m_file );
+ }
+
+ template <typename TYPE>
+ size_t WriteArray( const TYPE* a_array, int a_count )
+ {
+ ASSERT( m_file );
+ return fwrite( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file );
+ }
+
+ template <typename TYPE>
+ size_t Read( TYPE& a_value )
+ {
+ ASSERT( m_file );
+ return fread( (void*) &a_value, sizeof(a_value), 1, m_file );
+ }
+
+ template <typename TYPE>
+ size_t ReadArray( TYPE* a_array, int a_count )
+ {
+ ASSERT( m_file );
+ return fread( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file );
+ }
+};
+
+
+RTREE_TEMPLATE RTREE_QUAL::RTree()
+{
+ ASSERT( MAXNODES > MINNODES );
+ ASSERT( MINNODES > 0 );
+
+
+ // We only support machine word size simple data type eg. integer index or object pointer.
+ // Since we are storing as union with non data branch
+ ASSERT( sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int) );
+
+ // Precomputed volumes of the unit spheres for the first few dimensions
+ const float UNIT_SPHERE_VOLUMES[] =
+ {
+ 0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
+ 4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
+ 5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
+ 3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
+ 1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
+ 0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
+ 0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
+ };
+
+ m_root = AllocNode();
+ m_root->m_level = 0;
+ m_unitSphereVolume = (ELEMTYPEREAL) UNIT_SPHERE_VOLUMES[NUMDIMS];
+}
+
+
+RTREE_TEMPLATE
+RTREE_QUAL::~RTree() {
+ Reset(); // Free, or reset node memory
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::Insert( const ELEMTYPE a_min[NUMDIMS],
+ const ELEMTYPE a_max[NUMDIMS],
+ const DATATYPE& a_dataId )
+{
+#ifdef _DEBUG
+
+ for( int index = 0; index<NUMDIMS; ++index )
+ {
+ ASSERT( a_min[index] <= a_max[index] );
+ }
+
+#endif // _DEBUG
+
+ Rect rect;
+
+ for( int axis = 0; axis<NUMDIMS; ++axis )
+ {
+ rect.m_min[axis] = a_min[axis];
+ rect.m_max[axis] = a_max[axis];
+ }
+
+ InsertRect( &rect, a_dataId, &m_root, 0 );
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::Remove( const ELEMTYPE a_min[NUMDIMS],
+ const ELEMTYPE a_max[NUMDIMS],
+ const DATATYPE& a_dataId )
+{
+#ifdef _DEBUG
+
+ for( int index = 0; index<NUMDIMS; ++index )
+ {
+ ASSERT( a_min[index] <= a_max[index] );
+ }
+
+#endif // _DEBUG
+
+ Rect rect;
+
+ for( int axis = 0; axis<NUMDIMS; ++axis )
+ {
+ rect.m_min[axis] = a_min[axis];
+ rect.m_max[axis] = a_max[axis];
+ }
+
+ RemoveRect( &rect, a_dataId, &m_root );
+}
+
+
+RTREE_TEMPLATE
+int RTREE_QUAL::Search( const ELEMTYPE a_min[NUMDIMS],
+ const ELEMTYPE a_max[NUMDIMS],
+ bool a_resultCallback( DATATYPE a_data, void* a_context ),
+ void* a_context )
+{
+#ifdef _DEBUG
+
+ for( int index = 0; index<NUMDIMS; ++index )
+ {
+ ASSERT( a_min[index] <= a_max[index] );
+ }
+
+#endif // _DEBUG
+
+ Rect rect;
+
+ for( int axis = 0; axis<NUMDIMS; ++axis )
+ {
+ rect.m_min[axis] = a_min[axis];
+ rect.m_max[axis] = a_max[axis];
+ }
+
+ // NOTE: May want to return search result another way, perhaps returning the number of found elements here.
+
+ int foundCount = 0;
+ Search( m_root, &rect, foundCount, a_resultCallback, a_context );
+
+ return foundCount;
+}
+
+
+RTREE_TEMPLATE
+DATATYPE RTREE_QUAL::NearestNeighbor( const ELEMTYPE a_point[NUMDIMS] )
+{
+ return this->NearestNeighbor( a_point, 0, 0 );
+}
+
+
+RTREE_TEMPLATE
+DATATYPE RTREE_QUAL::NearestNeighbor( const ELEMTYPE a_point[NUMDIMS],
+ ELEMTYPE a_squareDistanceCallback( const ELEMTYPE a_point[NUMDIMS], DATATYPE a_data ),
+ ELEMTYPE* a_squareDistance )
+{
+ typedef typename std::vector<NNNode*>::iterator iterator;
+ std::vector<NNNode*> nodeList;
+ Node* node = m_root;
+ NNNode* closestNode = 0;
+ while( !closestNode || !closestNode->isLeaf )
+ {
+ //check every node on this level
+ for( int index = 0; index < node->m_count; ++index )
+ {
+ NNNode* newNode = new NNNode;
+ newNode->isLeaf = node->IsLeaf();
+ newNode->m_branch = node->m_branch[index];
+ if( newNode->isLeaf && a_squareDistanceCallback )
+ newNode->minDist = a_squareDistanceCallback( a_point, newNode->m_branch.m_data );
+ else
+ newNode->minDist = this->MinDist( a_point, &(node->m_branch[index].m_rect) );
+
+ //TODO: a custom list could be more efficient than a vector
+ this->InsertNNListSorted( &nodeList, newNode );
+ }
+ if( nodeList.size() == 0 )
+ {
+ return 0;
+ }
+ closestNode = nodeList.back();
+ node = closestNode->m_branch.m_child;
+ nodeList.pop_back();
+ free(closestNode);
+ }
+
+ // free memory used for remaining NNNodes in nodeList
+ for( iterator iter = nodeList.begin(); iter != nodeList.end(); ++iter )
+ {
+ NNNode* node = *iter;
+ free(node);
+ }
+
+ *a_squareDistance = closestNode->minDist;
+ return closestNode->m_branch.m_data;
+}
+
+
+RTREE_TEMPLATE
+int RTREE_QUAL::Count()
+{
+ int count = 0;
+
+ CountRec( m_root, count );
+
+ return count;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::CountRec( Node* a_node, int& a_count )
+{
+ if( a_node->IsInternalNode() ) // not a leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ CountRec( a_node->m_branch[index].m_child, a_count );
+ }
+ }
+ else // A leaf node
+ {
+ a_count += a_node->m_count;
+ }
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Load( const char* a_fileName )
+{
+ RemoveAll(); // Clear existing tree
+
+ RTFileStream stream;
+
+ if( !stream.OpenRead( a_fileName ) )
+ {
+ return false;
+ }
+
+ bool result = Load( stream );
+
+ stream.Close();
+
+ return result;
+};
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Load( RTFileStream& a_stream )
+{
+ // Write some kind of header
+ int _dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
+ int _dataSize = sizeof(DATATYPE);
+ int _dataNumDims = NUMDIMS;
+ int _dataElemSize = sizeof(ELEMTYPE);
+ int _dataElemRealSize = sizeof(ELEMTYPEREAL);
+ int _dataMaxNodes = TMAXNODES;
+ int _dataMinNodes = TMINNODES;
+
+ int dataFileId = 0;
+ int dataSize = 0;
+ int dataNumDims = 0;
+ int dataElemSize = 0;
+ int dataElemRealSize = 0;
+ int dataMaxNodes = 0;
+ int dataMinNodes = 0;
+
+ a_stream.Read( dataFileId );
+ a_stream.Read( dataSize );
+ a_stream.Read( dataNumDims );
+ a_stream.Read( dataElemSize );
+ a_stream.Read( dataElemRealSize );
+ a_stream.Read( dataMaxNodes );
+ a_stream.Read( dataMinNodes );
+
+ bool result = false;
+
+ // Test if header was valid and compatible
+ if( (dataFileId == _dataFileId)
+ && (dataSize == _dataSize)
+ && (dataNumDims == _dataNumDims)
+ && (dataElemSize == _dataElemSize)
+ && (dataElemRealSize == _dataElemRealSize)
+ && (dataMaxNodes == _dataMaxNodes)
+ && (dataMinNodes == _dataMinNodes)
+ )
+ {
+ // Recursively load tree
+ result = LoadRec( m_root, a_stream );
+ }
+
+ return result;
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::LoadRec( Node* a_node, RTFileStream& a_stream )
+{
+ a_stream.Read( a_node->m_level );
+ a_stream.Read( a_node->m_count );
+
+ if( a_node->IsInternalNode() ) // not a leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ Branch* curBranch = &a_node->m_branch[index];
+
+ a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS );
+ a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS );
+
+ curBranch->m_child = AllocNode();
+ LoadRec( curBranch->m_child, a_stream );
+ }
+ }
+ else // A leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ Branch* curBranch = &a_node->m_branch[index];
+
+ a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS );
+ a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS );
+
+ a_stream.Read( curBranch->m_data );
+ }
+ }
+
+ return true; // Should do more error checking on I/O operations
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Save( const char* a_fileName )
+{
+ RTFileStream stream;
+
+ if( !stream.OpenWrite( a_fileName ) )
+ {
+ return false;
+ }
+
+ bool result = Save( stream );
+
+ stream.Close();
+
+ return result;
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Save( RTFileStream& a_stream )
+{
+ // Write some kind of header
+ int dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
+ int dataSize = sizeof(DATATYPE);
+ int dataNumDims = NUMDIMS;
+ int dataElemSize = sizeof(ELEMTYPE);
+ int dataElemRealSize = sizeof(ELEMTYPEREAL);
+ int dataMaxNodes = TMAXNODES;
+ int dataMinNodes = TMINNODES;
+
+ a_stream.Write( dataFileId );
+ a_stream.Write( dataSize );
+ a_stream.Write( dataNumDims );
+ a_stream.Write( dataElemSize );
+ a_stream.Write( dataElemRealSize );
+ a_stream.Write( dataMaxNodes );
+ a_stream.Write( dataMinNodes );
+
+ // Recursively save tree
+ bool result = SaveRec( m_root, a_stream );
+
+ return result;
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::SaveRec( Node* a_node, RTFileStream& a_stream )
+{
+ a_stream.Write( a_node->m_level );
+ a_stream.Write( a_node->m_count );
+
+ if( a_node->IsInternalNode() ) // not a leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ Branch* curBranch = &a_node->m_branch[index];
+
+ a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS );
+ a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS );
+
+ SaveRec( curBranch->m_child, a_stream );
+ }
+ }
+ else // A leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ Branch* curBranch = &a_node->m_branch[index];
+
+ a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS );
+ a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS );
+
+ a_stream.Write( curBranch->m_data );
+ }
+ }
+
+ return true; // Should do more error checking on I/O operations
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::RemoveAll()
+{
+ // Delete all existing nodes
+ Reset();
+
+ m_root = AllocNode();
+ m_root->m_level = 0;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::Reset()
+{
+#ifdef RTREE_DONT_USE_MEMPOOLS
+ // Delete all existing nodes
+ RemoveAllRec( m_root );
+#else // RTREE_DONT_USE_MEMPOOLS
+ // Just reset memory pools. We are not using complex types
+ // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::RemoveAllRec( Node* a_node )
+{
+ ASSERT( a_node );
+ ASSERT( a_node->m_level >= 0 );
+
+ if( a_node->IsInternalNode() ) // This is an internal node in the tree
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ RemoveAllRec( a_node->m_branch[index].m_child );
+ }
+ }
+
+ FreeNode( a_node );
+}
+
+
+RTREE_TEMPLATE
+typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
+{
+ Node* newNode;
+
+#ifdef RTREE_DONT_USE_MEMPOOLS
+ newNode = new Node;
+#else // RTREE_DONT_USE_MEMPOOLS
+ // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+ InitNode( newNode );
+ return newNode;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::FreeNode( Node* a_node )
+{
+ ASSERT( a_node );
+
+#ifdef RTREE_DONT_USE_MEMPOOLS
+ delete a_node;
+#else // RTREE_DONT_USE_MEMPOOLS
+ // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+// Allocate space for a node in the list used in DeletRect to
+// store Nodes that are too empty.
+RTREE_TEMPLATE
+typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
+{
+#ifdef RTREE_DONT_USE_MEMPOOLS
+ return new ListNode;
+#else // RTREE_DONT_USE_MEMPOOLS
+ // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::FreeListNode( ListNode* a_listNode )
+{
+#ifdef RTREE_DONT_USE_MEMPOOLS
+ delete a_listNode;
+#else // RTREE_DONT_USE_MEMPOOLS
+ // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::InitNode( Node* a_node )
+{
+ a_node->m_count = 0;
+ a_node->m_level = -1;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::InitRect( Rect* a_rect )
+{
+ for( int index = 0; index < NUMDIMS; ++index )
+ {
+ a_rect->m_min[index] = (ELEMTYPE) 0;
+ a_rect->m_max[index] = (ELEMTYPE) 0;
+ }
+}
+
+
+// Inserts a new data rectangle into the index structure.
+// Recursively descends tree, propagates splits back up.
+// Returns 0 if node was not split. Old node updated.
+// If node was split, returns 1 and sets the pointer pointed to by
+// new_node to point to the new node. Old node updated to become one of two.
+// The level argument specifies the number of steps up from the leaf
+// level to insert; e.g. a data rectangle goes in at level = 0.
+RTREE_TEMPLATE
+bool RTREE_QUAL::InsertRectRec( Rect* a_rect,
+ const DATATYPE& a_id,
+ Node* a_node,
+ Node** a_newNode,
+ int a_level )
+{
+ ASSERT( a_rect && a_node && a_newNode );
+ ASSERT( a_level >= 0 && a_level <= a_node->m_level );
+
+ int index;
+ Branch branch;
+ Node* otherNode;
+
+ // Still above level for insertion, go down tree recursively
+ if( a_node->m_level > a_level )
+ {
+ index = PickBranch( a_rect, a_node );
+
+ if( !InsertRectRec( a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level ) )
+ {
+ // Child was not split
+ a_node->m_branch[index].m_rect =
+ CombineRect( a_rect, &(a_node->m_branch[index].m_rect) );
+ return false;
+ }
+ else // Child was split
+ {
+ a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child );
+ branch.m_child = otherNode;
+ branch.m_rect = NodeCover( otherNode );
+ return AddBranch( &branch, a_node, a_newNode );
+ }
+ }
+ else if( a_node->m_level == a_level ) // Have reached level for insertion. Add rect, split if necessary
+ {
+ branch.m_rect = *a_rect;
+ branch.m_child = (Node*) a_id;
+ // Child field of leaves contains id of data record
+ return AddBranch( &branch, a_node, a_newNode );
+ }
+ else
+ {
+ // Should never occur
+ ASSERT( 0 );
+ return false;
+ }
+}
+
+
+// Insert a data rectangle into an index structure.
+// InsertRect provides for splitting the root;
+// returns 1 if root was split, 0 if it was not.
+// The level argument specifies the number of steps up from the leaf
+// level to insert; e.g. a data rectangle goes in at level = 0.
+// InsertRect2 does the recursion.
+//
+RTREE_TEMPLATE
+bool RTREE_QUAL::InsertRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level )
+{
+ ASSERT( a_rect && a_root );
+ ASSERT( a_level >= 0 && a_level <= (*a_root)->m_level );
+#ifdef _DEBUG
+
+ for( int index = 0; index < NUMDIMS; ++index )
+ {
+ ASSERT( a_rect->m_min[index] <= a_rect->m_max[index] );
+ }
+
+#endif // _DEBUG
+
+ Node* newRoot;
+ Node* newNode;
+ Branch branch;
+
+ if( InsertRectRec( a_rect, a_id, *a_root, &newNode, a_level ) ) // Root split
+ {
+ newRoot = AllocNode(); // Grow tree taller and new root
+ newRoot->m_level = (*a_root)->m_level + 1;
+ branch.m_rect = NodeCover( *a_root );
+ branch.m_child = *a_root;
+ AddBranch( &branch, newRoot, NULL );
+ branch.m_rect = NodeCover( newNode );
+ branch.m_child = newNode;
+ AddBranch( &branch, newRoot, NULL );
+ *a_root = newRoot;
+ return true;
+ }
+
+ return false;
+}
+
+
+// Find the smallest rectangle that includes all rectangles in branches of a node.
+RTREE_TEMPLATE
+typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover( Node* a_node )
+{
+ ASSERT( a_node );
+
+ int firstTime = true;
+ Rect rect;
+ InitRect( &rect );
+
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( firstTime )
+ {
+ rect = a_node->m_branch[index].m_rect;
+ firstTime = false;
+ }
+ else
+ {
+ rect = CombineRect( &rect, &(a_node->m_branch[index].m_rect) );
+ }
+ }
+
+ return rect;
+}
+
+
+// Add a branch to a node. Split the node if necessary.
+// Returns 0 if node not split. Old node updated.
+// Returns 1 if node split, sets *new_node to address of new node.
+// Old node updated, becomes one of two.
+RTREE_TEMPLATE
+bool RTREE_QUAL::AddBranch( Branch* a_branch, Node* a_node, Node** a_newNode )
+{
+ ASSERT( a_branch );
+ ASSERT( a_node );
+
+ if( a_node->m_count < MAXNODES ) // Split won't be necessary
+ {
+ a_node->m_branch[a_node->m_count] = *a_branch;
+ ++a_node->m_count;
+
+ return false;
+ }
+ else
+ {
+ ASSERT( a_newNode );
+
+ SplitNode( a_node, a_branch, a_newNode );
+ return true;
+ }
+}
+
+
+// Disconnect a dependent node.
+// Caller must return (or stop using iteration index) after this as count has changed
+RTREE_TEMPLATE
+void RTREE_QUAL::DisconnectBranch( Node* a_node, int a_index )
+{
+ ASSERT( a_node && (a_index >= 0) && (a_index < MAXNODES) );
+ ASSERT( a_node->m_count > 0 );
+
+ // Remove element by swapping with the last element to prevent gaps in array
+ a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
+
+ --a_node->m_count;
+}
+
+
+// Pick a branch. Pick the one that will need the smallest increase
+// in area to accomodate the new rectangle. This will result in the
+// least total area for the covering rectangles in the current node.
+// In case of a tie, pick the one which was smaller before, to get
+// the best resolution when searching.
+RTREE_TEMPLATE
+int RTREE_QUAL::PickBranch( Rect* a_rect, Node* a_node )
+{
+ ASSERT( a_rect && a_node );
+
+ bool firstTime = true;
+ ELEMTYPEREAL increase;
+ ELEMTYPEREAL bestIncr = (ELEMTYPEREAL) -1;
+ ELEMTYPEREAL area;
+ ELEMTYPEREAL bestArea = 0;
+ int best = 0;
+ Rect tempRect;
+
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ Rect* curRect = &a_node->m_branch[index].m_rect;
+ area = CalcRectVolume( curRect );
+ tempRect = CombineRect( a_rect, curRect );
+ increase = CalcRectVolume( &tempRect ) - area;
+
+ if( (increase < bestIncr) || firstTime )
+ {
+ best = index;
+ bestArea = area;
+ bestIncr = increase;
+ firstTime = false;
+ }
+ else if( (increase == bestIncr) && (area < bestArea) )
+ {
+ best = index;
+ bestArea = area;
+ bestIncr = increase;
+ }
+ }
+
+ return best;
+}
+
+
+// Combine two rectangles into larger one containing both
+RTREE_TEMPLATE
+typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect( Rect* a_rectA, Rect* a_rectB )
+{
+ ASSERT( a_rectA && a_rectB );
+
+ Rect newRect;
+
+ for( int index = 0; index < NUMDIMS; ++index )
+ {
+ newRect.m_min[index] = rMin( a_rectA->m_min[index], a_rectB->m_min[index] );
+ newRect.m_max[index] = rMax( a_rectA->m_max[index], a_rectB->m_max[index] );
+ }
+
+ return newRect;
+}
+
+
+// Split a node.
+// Divides the nodes branches and the extra one between two nodes.
+// Old node is one of the new ones, and one really new one is created.
+// Tries more than one method for choosing a partition, uses best result.
+RTREE_TEMPLATE
+void RTREE_QUAL::SplitNode( Node* a_node, Branch* a_branch, Node** a_newNode )
+{
+ ASSERT( a_node );
+ ASSERT( a_branch );
+
+ // Could just use local here, but member or external is faster since it is reused
+ PartitionVars localVars;
+ PartitionVars* parVars = &localVars;
+ int level;
+
+ // Load all the branches into a buffer, initialize old node
+ level = a_node->m_level;
+ GetBranches( a_node, a_branch, parVars );
+
+ // Find partition
+ ChoosePartition( parVars, MINNODES );
+
+ // Put branches from buffer into 2 nodes according to chosen partition
+ *a_newNode = AllocNode();
+ (*a_newNode)->m_level = a_node->m_level = level;
+ LoadNodes( a_node, *a_newNode, parVars );
+
+ ASSERT( (a_node->m_count + (*a_newNode)->m_count) == parVars->m_total );
+}
+
+
+// Calculate the n-dimensional volume of a rectangle
+RTREE_TEMPLATE
+ELEMTYPEREAL RTREE_QUAL::RectVolume( Rect* a_rect )
+{
+ ASSERT( a_rect );
+
+ ELEMTYPEREAL volume = (ELEMTYPEREAL) 1;
+
+ for( int index = 0; index<NUMDIMS; ++index )
+ {
+ volume *= a_rect->m_max[index] - a_rect->m_min[index];
+ }
+
+ ASSERT( volume >= (ELEMTYPEREAL) 0 );
+
+ return volume;
+}
+
+
+// The exact volume of the bounding sphere for the given Rect
+RTREE_TEMPLATE
+ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume( Rect* a_rect )
+{
+ ASSERT( a_rect );
+
+ ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL) 0;
+ ELEMTYPEREAL radius;
+
+ for( int index = 0; index < NUMDIMS; ++index )
+ {
+ ELEMTYPEREAL halfExtent =
+ ( (ELEMTYPEREAL) a_rect->m_max[index] - (ELEMTYPEREAL) a_rect->m_min[index] ) * 0.5f;
+ sumOfSquares += halfExtent * halfExtent;
+ }
+
+ radius = (ELEMTYPEREAL) sqrt( sumOfSquares );
+
+ // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
+ if( NUMDIMS == 3 )
+ {
+ return radius * radius * radius * m_unitSphereVolume;
+ }
+ else if( NUMDIMS == 2 )
+ {
+ return radius * radius * m_unitSphereVolume;
+ }
+ else
+ {
+ return (ELEMTYPEREAL) (pow( radius, NUMDIMS ) * m_unitSphereVolume);
+ }
+}
+
+
+// Use one of the methods to calculate retangle volume
+RTREE_TEMPLATE
+ELEMTYPEREAL RTREE_QUAL::CalcRectVolume( Rect* a_rect )
+{
+#ifdef RTREE_USE_SPHERICAL_VOLUME
+ return RectSphericalVolume( a_rect ); // Slower but helps certain merge cases
+#else // RTREE_USE_SPHERICAL_VOLUME
+ return RectVolume( a_rect ); // Faster but can cause poor merges
+#endif // RTREE_USE_SPHERICAL_VOLUME
+}
+
+
+// Load branch buffer with branches from full node plus the extra branch.
+RTREE_TEMPLATE
+void RTREE_QUAL::GetBranches( Node* a_node, Branch* a_branch, PartitionVars* a_parVars )
+{
+ ASSERT( a_node );
+ ASSERT( a_branch );
+
+ ASSERT( a_node->m_count == MAXNODES );
+
+ // Load the branch buffer
+ for( int index = 0; index < MAXNODES; ++index )
+ {
+ a_parVars->m_branchBuf[index] = a_node->m_branch[index];
+ }
+
+ a_parVars->m_branchBuf[MAXNODES] = *a_branch;
+ a_parVars->m_branchCount = MAXNODES + 1;
+
+ // Calculate rect containing all in the set
+ a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
+
+ for( int index = 1; index < MAXNODES + 1; ++index )
+ {
+ a_parVars->m_coverSplit =
+ CombineRect( &a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect );
+ }
+
+ a_parVars->m_coverSplitArea = CalcRectVolume( &a_parVars->m_coverSplit );
+
+ InitNode( a_node );
+}
+
+
+// Method #0 for choosing a partition:
+// As the seeds for the two groups, pick the two rects that would waste the
+// most area if covered by a single rectangle, i.e. evidently the worst pair
+// to have in the same group.
+// Of the remaining, one at a time is chosen to be put in one of the two groups.
+// The one chosen is the one with the greatest difference in area expansion
+// depending on which group - the rect most strongly attracted to one group
+// and repelled from the other.
+// If one group gets too full (more would force other group to violate min
+// fill requirement) then other group gets the rest.
+// These last are the ones that can go in either group most easily.
+RTREE_TEMPLATE
+void RTREE_QUAL::ChoosePartition( PartitionVars* a_parVars, int a_minFill )
+{
+ ASSERT( a_parVars );
+
+ ELEMTYPEREAL biggestDiff;
+ int group, chosen = 0, betterGroup = 0;
+
+ InitParVars( a_parVars, a_parVars->m_branchCount, a_minFill );
+ PickSeeds( a_parVars );
+
+ while( ( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total )
+ && ( a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill) )
+ && ( a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill) ) )
+ {
+ biggestDiff = (ELEMTYPEREAL) -1;
+
+ for( int index = 0; index<a_parVars->m_total; ++index )
+ {
+ if( !a_parVars->m_taken[index] )
+ {
+ Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
+ Rect rect0 = CombineRect( curRect, &a_parVars->m_cover[0] );
+ Rect rect1 = CombineRect( curRect, &a_parVars->m_cover[1] );
+ ELEMTYPEREAL growth0 = CalcRectVolume( &rect0 ) - a_parVars->m_area[0];
+ ELEMTYPEREAL growth1 = CalcRectVolume( &rect1 ) - a_parVars->m_area[1];
+ ELEMTYPEREAL diff = growth1 - growth0;
+
+ if( diff >= 0 )
+ {
+ group = 0;
+ }
+ else
+ {
+ group = 1;
+ diff = -diff;
+ }
+
+ if( diff > biggestDiff )
+ {
+ biggestDiff = diff;
+ chosen = index;
+ betterGroup = group;
+ }
+ else if( (diff == biggestDiff)
+ && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]) )
+ {
+ chosen = index;
+ betterGroup = group;
+ }
+ }
+ }
+
+ Classify( chosen, betterGroup, a_parVars );
+ }
+
+ // If one group too full, put remaining rects in the other
+ if( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total )
+ {
+ if( a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill )
+ {
+ group = 1;
+ }
+ else
+ {
+ group = 0;
+ }
+
+ for( int index = 0; index<a_parVars->m_total; ++index )
+ {
+ if( !a_parVars->m_taken[index] )
+ {
+ Classify( index, group, a_parVars );
+ }
+ }
+ }
+
+ ASSERT( (a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total );
+ ASSERT( (a_parVars->m_count[0] >= a_parVars->m_minFill)
+ && (a_parVars->m_count[1] >= a_parVars->m_minFill) );
+}
+
+
+// Copy branches from the buffer into two nodes according to the partition.
+RTREE_TEMPLATE
+void RTREE_QUAL::LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars )
+{
+ ASSERT( a_nodeA );
+ ASSERT( a_nodeB );
+ ASSERT( a_parVars );
+
+ for( int index = 0; index < a_parVars->m_total; ++index )
+ {
+ ASSERT( a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1 );
+
+ if( a_parVars->m_partition[index] == 0 )
+ {
+ AddBranch( &a_parVars->m_branchBuf[index], a_nodeA, NULL );
+ }
+ else if( a_parVars->m_partition[index] == 1 )
+ {
+ AddBranch( &a_parVars->m_branchBuf[index], a_nodeB, NULL );
+ }
+ }
+}
+
+
+// Initialize a PartitionVars structure.
+RTREE_TEMPLATE
+void RTREE_QUAL::InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill )
+{
+ ASSERT( a_parVars );
+
+ a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
+ a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL) 0;
+ a_parVars->m_total = a_maxRects;
+ a_parVars->m_minFill = a_minFill;
+
+ for( int index = 0; index < a_maxRects; ++index )
+ {
+ a_parVars->m_taken[index] = false;
+ a_parVars->m_partition[index] = -1;
+ }
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::PickSeeds( PartitionVars* a_parVars )
+{
+ int seed0 = 0, seed1 = 0;
+ ELEMTYPEREAL worst, waste;
+ ELEMTYPEREAL area[MAXNODES + 1];
+
+ for( int index = 0; index<a_parVars->m_total; ++index )
+ {
+ area[index] = CalcRectVolume( &a_parVars->m_branchBuf[index].m_rect );
+ }
+
+ worst = -a_parVars->m_coverSplitArea - 1;
+
+ for( int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA )
+ {
+ for( int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB )
+ {
+ Rect oneRect = CombineRect( &a_parVars->m_branchBuf[indexA].m_rect,
+ &a_parVars->m_branchBuf[indexB].m_rect );
+ waste = CalcRectVolume( &oneRect ) - area[indexA] - area[indexB];
+
+ if( waste >= worst )
+ {
+ worst = waste;
+ seed0 = indexA;
+ seed1 = indexB;
+ }
+ }
+ }
+
+ Classify( seed0, 0, a_parVars );
+ Classify( seed1, 1, a_parVars );
+}
+
+
+// Put a branch in one of the groups.
+RTREE_TEMPLATE
+void RTREE_QUAL::Classify( int a_index, int a_group, PartitionVars* a_parVars )
+{
+ ASSERT( a_parVars );
+ ASSERT( !a_parVars->m_taken[a_index] );
+
+ a_parVars->m_partition[a_index] = a_group;
+ a_parVars->m_taken[a_index] = true;
+
+ if( a_parVars->m_count[a_group] == 0 )
+ {
+ a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
+ }
+ else
+ {
+ a_parVars->m_cover[a_group] = CombineRect( &a_parVars->m_branchBuf[a_index].m_rect,
+ &a_parVars->m_cover[a_group] );
+ }
+
+ a_parVars->m_area[a_group] = CalcRectVolume( &a_parVars->m_cover[a_group] );
+ ++a_parVars->m_count[a_group];
+}
+
+
+// Delete a data rectangle from an index structure.
+// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
+// Returns 1 if record not found, 0 if success.
+// RemoveRect provides for eliminating the root.
+RTREE_TEMPLATE
+bool RTREE_QUAL::RemoveRect( Rect* a_rect, const DATATYPE& a_id, Node** a_root )
+{
+ ASSERT( a_rect && a_root );
+ ASSERT( *a_root );
+
+ Node* tempNode;
+ ListNode* reInsertList = NULL;
+
+ if( !RemoveRectRec( a_rect, a_id, *a_root, &reInsertList ) )
+ {
+ // Found and deleted a data item
+ // Reinsert any branches from eliminated nodes
+ while( reInsertList )
+ {
+ tempNode = reInsertList->m_node;
+
+ for( int index = 0; index < tempNode->m_count; ++index )
+ {
+ InsertRect( &(tempNode->m_branch[index].m_rect),
+ tempNode->m_branch[index].m_data,
+ a_root,
+ tempNode->m_level );
+ }
+
+ ListNode* remLNode = reInsertList;
+ reInsertList = reInsertList->m_next;
+
+ FreeNode( remLNode->m_node );
+ FreeListNode( remLNode );
+ }
+
+ // Check for redundant root (not leaf, 1 child) and eliminate
+ if( (*a_root)->m_count == 1 && (*a_root)->IsInternalNode() )
+ {
+ tempNode = (*a_root)->m_branch[0].m_child;
+
+ ASSERT( tempNode );
+ FreeNode( *a_root );
+ *a_root = tempNode;
+ }
+
+ return false;
+ }
+ else
+ {
+ return true;
+ }
+}
+
+
+// Delete a rectangle from non-root part of an index structure.
+// Called by RemoveRect. Descends tree recursively,
+// merges branches on the way back up.
+// Returns 1 if record not found, 0 if success.
+RTREE_TEMPLATE
+bool RTREE_QUAL::RemoveRectRec( Rect* a_rect,
+ const DATATYPE& a_id,
+ Node* a_node,
+ ListNode** a_listNode )
+{
+ ASSERT( a_rect && a_node && a_listNode );
+ ASSERT( a_node->m_level >= 0 );
+
+ if( a_node->IsInternalNode() ) // not a leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( Overlap( a_rect, &(a_node->m_branch[index].m_rect) ) )
+ {
+ if( !RemoveRectRec( a_rect, a_id, a_node->m_branch[index].m_child, a_listNode ) )
+ {
+ if( a_node->m_branch[index].m_child->m_count >= MINNODES )
+ {
+ // child removed, just resize parent rect
+ a_node->m_branch[index].m_rect =
+ NodeCover( a_node->m_branch[index].m_child );
+ }
+ else
+ {
+ // child removed, not enough entries in node, eliminate node
+ ReInsert( a_node->m_branch[index].m_child, a_listNode );
+ DisconnectBranch( a_node, index ); // Must return after this call as count has changed
+ }
+
+ return false;
+ }
+ }
+ }
+
+ return true;
+ }
+ else // A leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( a_node->m_branch[index].m_child == (Node*) a_id )
+ {
+ DisconnectBranch( a_node, index ); // Must return after this call as count has changed
+ return false;
+ }
+ }
+
+ return true;
+ }
+}
+
+
+// Decide whether two rectangles overlap.
+RTREE_TEMPLATE
+bool RTREE_QUAL::Overlap( Rect* a_rectA, Rect* a_rectB )
+{
+ ASSERT( a_rectA && a_rectB );
+
+ for( int index = 0; index < NUMDIMS; ++index )
+ {
+ if( a_rectA->m_min[index] > a_rectB->m_max[index]
+ || a_rectB->m_min[index] > a_rectA->m_max[index] )
+ {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+// Add a node to the reinsertion list. All its branches will later
+// be reinserted into the index structure.
+RTREE_TEMPLATE
+void RTREE_QUAL::ReInsert( Node* a_node, ListNode** a_listNode )
+{
+ ListNode* newListNode;
+
+ newListNode = AllocListNode();
+ newListNode->m_node = a_node;
+ newListNode->m_next = *a_listNode;
+ *a_listNode = newListNode;
+}
+
+
+// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
+RTREE_TEMPLATE
+bool RTREE_QUAL::Search( Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(
+ DATATYPE a_data,
+ void* a_context ), void* a_context )
+{
+ ASSERT( a_node );
+ ASSERT( a_node->m_level >= 0 );
+ ASSERT( a_rect );
+
+ if( a_node->IsInternalNode() ) // This is an internal node in the tree
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
+ {
+ if( !Search( a_node->m_branch[index].m_child, a_rect, a_foundCount,
+ a_resultCallback, a_context ) )
+ {
+ return false; // Don't continue searching
+ }
+ }
+ }
+ }
+ else // This is a leaf node
+ {
+ for( int index = 0; index < a_node->m_count; ++index )
+ {
+ if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
+ {
+ DATATYPE& id = a_node->m_branch[index].m_data;
+
+ // NOTE: There are different ways to return results. Here's where to modify
+ if( &a_resultCallback )
+ {
+ ++a_foundCount;
+
+ if( !a_resultCallback( id, a_context ) )
+ {
+ return false; // Don't continue searching
+ }
+ }
+ }
+ }
+ }
+
+ return true; // Continue searching
+}
+
+
+//calculate the minimum distance between a point and a rectangle as defined by Manolopoulos et al.
+//it uses the square distance to avoid the use of ELEMTYPEREAL values, which are slower.
+RTREE_TEMPLATE
+ELEMTYPE RTREE_QUAL::MinDist( const ELEMTYPE a_point[NUMDIMS], Rect* a_rect )
+{
+ ELEMTYPE *q, *s, *t;
+ q = (ELEMTYPE*) a_point;
+ s = a_rect->m_min;
+ t = a_rect->m_max;
+ int minDist = 0;
+ for( int index = 0; index < NUMDIMS; index++ )
+ {
+ int r = q[index];
+ if( q[index] < s[index] )
+ {
+ r = s[index];
+ }
+ else if( q[index] >t[index] )
+ {
+ r = t[index];
+ }
+ int addend = q[index] - r;
+ minDist += addend * addend;
+ }
+ return minDist;
+}
+
+
+//insert a NNNode in a list sorted by its minDist (desc.)
+RTREE_TEMPLATE
+void RTREE_QUAL::InsertNNListSorted( std::vector<NNNode*>* nodeList, NNNode* newNode )
+{
+ typedef typename std::vector<NNNode*>::iterator iterator;
+ iterator iter = nodeList->begin();
+ while( iter != nodeList->end() && (*iter)->minDist > newNode->minDist )
+ {
+ ++iter;
+ }
+ nodeList->insert(iter, newNode);
+}
+
+
+#undef RTREE_TEMPLATE
+#undef RTREE_QUAL
+#undef RTREE_SEARCH_TEMPLATE
+#undef RTREE_SEARCH_QUAL
+
+#endif // RTREE_H