diff options
author | Purusharth Saxena | 2020-06-24 04:01:44 +0530 |
---|---|---|
committer | GitHub | 2020-06-24 04:01:44 +0530 |
commit | ed86b5f6d84efe35cea6b63b4f7d6afce8cde4b7 (patch) | |
tree | b26baa056886770477105fca507791420cc31a7f | |
parent | f0525bb9d03e413f0d0c8314945c2231ef95a54e (diff) | |
parent | ada683cd4827f2b996998a10ed5c967b7945d530 (diff) | |
download | FSF-mathematics-python-code-archive-ed86b5f6d84efe35cea6b63b4f7d6afce8cde4b7.tar.gz FSF-mathematics-python-code-archive-ed86b5f6d84efe35cea6b63b4f7d6afce8cde4b7.tar.bz2 FSF-mathematics-python-code-archive-ed86b5f6d84efe35cea6b63b4f7d6afce8cde4b7.zip |
Merge pull request #20 from vnb09/fsf_tasks
Fsf tasks
22 files changed, 1004 insertions, 0 deletions
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/README.md b/FSF-2020/approximations-and-optimizations/Critical-Points/README.md new file mode 100644 index 0000000..f0747bb --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/README.md @@ -0,0 +1,32 @@ +<h1><div align=”center”><b>SubTopic: Critical Points</b></h1></div> +<br/></br> + +<tab>file1_Critical_Point_of_a_function + +![file1_Critical_Point_of_a_function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif?raw=true) +<br/></br> +<br/></br> + +<tab>file2_Traces_and_Tangent + +![file2_Traces_and_Tangent](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif?raw=true) +<br/></br> +<br/></br> + +<tab>file3_Tangent_plane_at_extrema_of_a_function + +![file3_Tangent_plane_at_extrema_of_a_function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif?raw=true) +<br/></br> +<br/></br> + +<tab>file4_Types_of_critical_points + +![file4_Types_of_critical_points](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif?raw=true) +<br/></br> +<br/></br> + +<tab>file5_f(x,y)=(y-x)(1-2x-3y) + +![file5_f(x,y)=(y-x)(1-2x-3y)](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x%2Cy)%3D(y-x)(1-2x-3y).gif?raw=true) +<br/></br> +<br/></br> diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif Binary files differnew file mode 100644 index 0000000..ca3989c --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py new file mode 100644 index 0000000..e8cb08d --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py @@ -0,0 +1,77 @@ +from manimlib.imports import* +import math as m + +#---- case 1: parial derivatives exist at critical point of the function +class firstScene(ThreeDScene): + def construct(self): + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #---- f(x,y) = e^(-10x^2-10y^2) + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + m.exp(-10*u**2-10*v**2) + ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]).fade(0.6).scale(3.5).shift([0,0,1.5]) + + l1 = Line([0,0,3.75],[0,0,0],color = '#800000') + + d = Dot([0,0,3.75],color = '#800000') #---- critical point + + d_text = TextMobject("$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y} = 0$").scale(0.8).to_corner(UL) + + f_text = TextMobject("Critical Point ",color = YELLOW).shift(3.4*UP).scale(0.5) + + self.set_camera_orientation(phi = 45*DEGREES, theta = 40*DEGREES) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.add_fixed_in_frame_mobjects(d_text) + self.begin_ambient_camera_rotation(rate = 0.2) + self.play(Write(surface)) + self.wait(1) + self.play(Write(l1)) + self.play(Write(d)) + self.wait(1) + self.add_fixed_in_frame_mobjects(f_text) + self.wait(3) + self.play(FadeOut(f_text),FadeOut(surface),FadeOut(axes),FadeOut(d_text),FadeOut(d),FadeOut(l1),FadeOut(label_x),FadeOut(label_y)) + + +#---- case 2: parial derivatives do not exist at critical point of the function +class secondScene(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #---- g(x,y)= |x|+|y| + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + abs(u)+abs(v) + ]),u_min = -1.5, u_max = 1.5, v_min = -1.5, v_max = 1.5, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]) + + d2 = Dot([0,0,0],color = '#800000') #---- critical point + + d2_text = TextMobject("$\\frac{\\partial f}{\\partial x}$ and/or $\\frac{\\partial f}{\\partial y}$ does not exist").scale(0.7).to_corner(UL) + + g_text = TextMobject("Critical Point",color = YELLOW).shift(1.2*RIGHT).scale(0.6) + + self.set_camera_orientation(phi = 60*DEGREES, theta = 40*DEGREES) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.add_fixed_in_frame_mobjects(d2_text) + self.begin_ambient_camera_rotation(rate = 0.2) + self.wait(1) + self.play(Write(surface2)) + self.wait(1) + self.play(Write(d2)) + self.wait(1) + self.add_fixed_in_frame_mobjects(g_text) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif Binary files differnew file mode 100644 index 0000000..84acf2e --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py new file mode 100644 index 0000000..4b020e1 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py @@ -0,0 +1,88 @@ +from manimlib.imports import* +import math as m + +#---- tangent to the trace with x constant +class firstScene(ThreeDScene): + def construct(self): + + axes = ThreeDAxes().scale(1) + label_x = TextMobject("$x$").shift([5.8,-0.5,0]) + label_y = TextMobject("$y$").shift([-0.5,-5.6,0]).rotate(-4.5) + + #---- graph of f(x,y) = -x^2-y^2 + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),u_min=-1,u_max=1, v_min=-1,v_max=1,checkerboard_colors=[PURPLE_C,PURPLE_D,PURPLE_E,PURPLE_B]).scale(1.5).shift([0,0,2]).rotate(0.2) + + #---- curve(trace) along y axis + curve = ParametricSurface( + lambda u, v: np.array([ + u*0.4, + v, + -v**2 + ]),v_min =-1 , v_max =1 , u_min = -0.1, u_max = 0.1).scale(1.6).shift([0.02,0.1,2.3]).set_color("#800000").rotate(0.1) + + d = Dot(color =YELLOW).shift([-0.05,-0.2,2.3]) #---- critical point + + x_text = TextMobject("Tangent to the trace with $x$ constant at critical point").shift(3*RIGHT+2*UP).scale(0.5).to_corner(UL) + + tangent_line = Line([-0.05,-1.5,2.3],[-0.05,1.5,2.3],color = '#228B22') + + self.add(axes) + self.set_camera_orientation(phi = 40 * DEGREES, theta = 55 * DEGREES) + self.begin_ambient_camera_rotation(rate = 0.1) + self.add(label_x) + self.add(label_y) + self.play(Write(surface)) + self.add_fixed_in_frame_mobjects(x_text) + self.add(curve) + self.wait(1) + self.play(Write(tangent_line),Write(d)) + self.wait(1) + + + +#---- tangent to the trace with y constant +class secondScene(ThreeDScene): + def construct(self): + + axes = ThreeDAxes().scale(1) + label_x = TextMobject("$x$").shift([5.8,-0.5,0]) + label_y = TextMobject("$y$").shift([-0.5,-5.6,0]).rotate(-4.5) + + #---- graph of f(x,y) = -x^2-y^2 + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,2]).rotate(0.2) + + #---- curve(trace) along x axis + curve = ParametricSurface( + lambda u, v: np.array([ + u, + v*0.4, + -u**2 + ]),v_min = -0.1, v_max = 0.1, u_min = -1, u_max = 1).scale(1.6).shift([0.07,0.1,2.3]).set_color("#800000") + + d = Dot(color = YELLOW).shift([0,-0.2,2.3]) #---- critical point + + tangent_line = Line(color = '#228B22').scale(1).shift([0,-0.2,2.3]).rotate(m.radians(190),LEFT) + + y_text = TextMobject("Tangent to the trace with $y$ constant at critical point").shift(3*RIGHT+2*UP).scale(0.5).to_corner(UL) + + self.add(axes) + self.set_camera_orientation(phi = 40 * DEGREES, theta = 55 * DEGREES) + self.add(label_x) + self.add(label_y) + self.begin_ambient_camera_rotation(rate = 0.1) + self.play(Write(surface)) + self.add_fixed_in_frame_mobjects(y_text) + self.add(curve) + self.wait(1.5) + self.play(Write(tangent_line),Write(d)) + self.wait(0.5) diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif Binary files differnew file mode 100644 index 0000000..14fb318 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py new file mode 100644 index 0000000..e674113 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py @@ -0,0 +1,73 @@ +from manimlib.imports import* + +#---- tangent plane to minima of the function +class firstScene(ThreeDScene): + def construct(self): + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #---- parabola: f(x,y) = x**2 + y**2 + parabola = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2+v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_E,GREEN_D,GREEN_C,GREEN_B], resolution = (20, 20)).scale(1) + + d = Dot(np.array([0,0,0]), color = '#800000') # ---- critical point + + tangent_plane = Rectangle(fill_color = '#C0C0C0', fill_opacity = 0.3).move_to(ORIGIN).fade(0.7) # ----tangent plane + + parabola_text = TextMobject("Minimum with horizontal tangent plane").scale(0.7).to_corner(UL) + + self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES) + self.begin_ambient_camera_rotation(rate = 0.2) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.add_fixed_in_frame_mobjects(parabola_text) + self.wait(1) + self.play(Write(parabola)) + self.play(ShowCreation(d)) + self.wait(1) + self.play(ShowCreation(tangent_plane)) + self.wait(2) + self.play(FadeOut(parabola_text),FadeOut(parabola),FadeOut(tangent_plane),FadeOut(d),FadeOut(label_x),FadeOut(label_y),FadeOut(axes)) + + +#---- tangent plane to maxima of the function +class secondScene(ThreeDScene): + def construct(self): + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #----parabola: g(x,y) = -x**2-y**2 + parabola = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [BLUE_E,BLUE_D,BLUE_C,BLUE_B], resolution = (20, 20)).scale(1) + + d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point + + tangent_plane = Rectangle(fill_color = '#C0C0C0',fill_opacity = 0.3).move_to(ORIGIN).fade(0.7) #---- tangent plane + + parabola_text = TextMobject("Maximum with horizontal tangent plane").scale(0.7).to_corner(UL) + + self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES) + self.begin_ambient_camera_rotation(rate = 0.2) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.add_fixed_in_frame_mobjects(parabola_text) + self.wait(1) + self.play(Write(parabola)) + self.play(ShowCreation(d)) + self.wait(1) + self.play(ShowCreation(tangent_plane)) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif Binary files differnew file mode 100644 index 0000000..91e7084 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py new file mode 100644 index 0000000..656fb68 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py @@ -0,0 +1,134 @@ +from manimlib.imports import* + + +#---- Relative Maxima +class firstScene(ThreeDScene): + def construct(self): + + r_text = TextMobject("Relative Maximum at ORIGIN",color ='#87CEFA') + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #----graph of the function f(x,y) = -x**2-y**2 + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).scale(1.5).shift([0,0,-0.51]).fade(0.3) + + f_text = TextMobject("$f(x,y) = -x^2-y^2$").to_corner(UL) + + d = Dot(color = "#800000").shift([0,0,0]) #---- critical point + + self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES) + self.add_fixed_in_frame_mobjects(r_text) + self.wait(1) + self.play(FadeOut(r_text)) + self.begin_ambient_camera_rotation(rate = 0.1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.play(Write(surface),Write(d)) + self.add_fixed_in_frame_mobjects(f_text) + self.wait(2) + self.play(FadeOut(axes),FadeOut(surface),FadeOut(f_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y)) + + +#---- Relative Minima +class secondScene(ThreeDScene): + def construct(self): + + r2_text = TextMobject("Relative Minimum at ORIGIN",color ='#87CEFA') + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #----graph of the function g(x,y) = x**2+y**2 + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2+v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors =[TEAL_B,TEAL_C,TEAL_D,TEAL_E]).scale(1.5).shift([0,0,0.55]).fade(0.1) + + d = Dot(color = "#800000").shift([0,0,0]) #---- critical point + + g_text = TextMobject("$f(x,y) = x^2+y^2$").to_corner(UL) + + self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES) + self.add_fixed_in_frame_mobjects(r2_text) + self.wait(1) + self.play(FadeOut(r2_text)) + self.begin_ambient_camera_rotation(rate = 0.1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.play(Write(surface),Write(d)) + self.add_fixed_in_frame_mobjects(g_text) + self.wait(2) + self.play(FadeOut(axes),FadeOut(surface),FadeOut(g_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y)) + + + +#---- Saddle Point +class thirdScene(ThreeDScene): + def construct(self): + + r3_text = TextMobject("Saddle Point", color = '#87CEFA') + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #---- graph of function h(x,y) = -x^2 + y^2 + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2+v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1,checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,0]) + + #---- curve(trace) along x axis + curve_x = ParametricSurface( + lambda u, v: np.array([ + u*0.4, + v, + v**2 + ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,0.34]).scale(1.5).set_color("#800000") + + #---- curve(trace) along y axis + curve_y = ParametricSurface( + lambda u, v: np.array([ + u, + v*0.4, + -u**2 + ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(1.6).shift([0,0,-0.1]).set_color("#800000") + + d = Dot(color = GREEN).shift([0,0,0.1]) #---- critical point + + h_text = TextMobject("$f(x,y) = -x^2+y^2$").to_corner(UL) + + self.add_fixed_in_frame_mobjects(r3_text) + self.wait(1) + self.set_camera_orientation(phi = 50 * DEGREES,theta = 45 * DEGREES) + self.play(FadeOut(r3_text)) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.begin_ambient_camera_rotation(rate = 0.3) + self.add_fixed_in_frame_mobjects(h_text) + self.play(Write(surface)) + self.wait(1) + self.add(curve_y) + self.add(d) + self.wait(1) + self.play(FadeOut(curve_y)) + self.wait(1) + self.add(curve_x) + self.wait(1) + self.add(d) + self.wait(1) diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif Binary files differnew file mode 100644 index 0000000..4bc92f8 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py b/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py new file mode 100644 index 0000000..41c3b61 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py @@ -0,0 +1,29 @@ +from manimlib.imports import* + +#---- visualization of the function +class ExampleAnimation(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #---- f(x,y) = (y-x)(1-2x-3y) + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + (v-u)*(1-2*u-3*v) + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D, PURPLE_E]).scale(1).fade(0.2).shift([0.2,0.2,0]) + + f_text = TextMobject("$f(x,y) = (y-x)(1-2x-3y)$").to_corner(UL) + + self.set_camera_orientation(phi = 60 * DEGREES, theta = 75 * DEGREES) + self.begin_ambient_camera_rotation(rate=0.1) + self.add_fixed_in_frame_mobjects(f_text) + self.wait(1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.wait(1) + self.play(Write(f)) + self.wait(4) diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif Binary files differnew file mode 100644 index 0000000..2b8bf5f --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py new file mode 100644 index 0000000..4c17f90 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py @@ -0,0 +1,50 @@ +from manimlib.imports import* + +#---- tangent plane is parallel to the surface of the funtion at a point +class firstScene(ThreeDScene): + def construct(self): + + s1_text=TextMobject("Suppose, the point $(x,y)$ lies on the surface of the function.").scale(0.5).shift(2*UP) + s2_text=TextMobject("When zooming on that point, the surface would appear more and more like a plane.").scale(0.5).shift(1*UP) + s3_text=TextMobject("This plane is called the tangent plane.").scale(0.5) + + #---- graph of function f(x,y) = -x^2-y^2 + + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(1) + + + d = Dot([0,0,0],color = '#800000') #---- critical point + + r = Rectangle(color = PURPLE,fill_opacity=0.2).shift([0.1,0,0]).scale(0.3) #---- tangent plane + + s = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(3.5) + + d2 = Dot([0,0,2.5],color = '#800000') #---- changing position of critical point + + r2 = Rectangle(color = PURPLE,fill_opacity=0.5).shift([0.1,0,2.5]).scale(0.3) #---- changing position of tangent plane + + self.set_camera_orientation(phi = 50 * DEGREES, theta = 45 * DEGREES) + self.add_fixed_in_frame_mobjects(s1_text) + self.add_fixed_in_frame_mobjects(s2_text) + self.add_fixed_in_frame_mobjects(s3_text) + self.wait(2) + self.play(FadeOut(s1_text)) + self.play(FadeOut(s2_text)) + self.play(FadeOut(s3_text)) + self.wait(1) + self.play(Write(f)) + self.play(Write(d)) + self.play(Write(r)) + self.wait(2) + self.play(ReplacementTransform(f,s),ReplacementTransform(d,d2),ReplacementTransform(r,r2)) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py new file mode 100644 index 0000000..984db16 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py @@ -0,0 +1,34 @@ +from manimlib.imports import* + +class TangenttoSurface(ThreeDScene): + + def construct(self): + axes = ThreeDAxes() + + #----f(x,y): x**2+y**2 + p = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2+v**2 + ]),v_min = -1,v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_C,GREEN_D], + resolution = (20, 20)).scale(1) + self.set_camera_orientation(phi = 75*DEGREES) + + h_text = TextMobject("The graph tends to coincide with its tangent plane").scale(0.5).to_corner(UL) + d = Dot([0,0,0],color ='#800000') #----critical point + r = Rectangle(height = 2,breadth = 1,color = YELLOW).scale(0.5) #----tangent plane to critical point + line1 = DashedLine(color=RED).shift(4*UP+1.3*RIGHT).rotate(1.571,UP).scale(1.2) + line2 = DashedLine(color=RED).shift(4*UP-1.3*RIGHT).rotate(1.571,UP).scale(1.2) + + r2 = Rectangle(height = 2, breadth = 1,color = GREEN, fill_opacity=0.3).scale(0.5) + + self.add(axes) + self.play(Write(r)) + self.play(Write(p),Write(d)) + self.play(ShowCreation(line1),ShowCreation(line2)) + self.wait(2) + + self.play(FadeOut(line1),FadeOut(line2),ReplacementTransform(p,r2)) + self.add_fixed_in_frame_mobjects(h_text) + self.wait(1) diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py new file mode 100644 index 0000000..13bd73e --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py @@ -0,0 +1,30 @@ +from manimlib.imports import* +import math + +#---- tangent plane does not exists for f(x,y): sqrt(x**2+y**2) at origin + +class TangenttoSurface(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + + #----f(x,y): sqrt(x**2+y**2) + p = ParametricSurface( + lambda u, v: np.array([ + u, + v, + math.sqrt(u**2+v**2) + ]),v_min = -1,v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_C,TEAL_D], + resolution = (20, 20)).scale(1) + + self.set_camera_orientation(phi = 75 * DEGREES) + + d = Dot([0,0,0],color = '#800000') #----critical point + d_text = TextMobject("$(0,0)$").scale(0.5).shift(0.2*DOWN) + f_text = TextMobject("$f$ is not differentiable at origin").scale(0.5).to_corner(UL) + + self.begin_ambient_camera_rotation(rate=0.1) + self.add(axes) + self.play(Write(p),Write(d)) + self.add_fixed_in_frame_mobjects(d_text) + self.add_fixed_in_frame_mobjects(f_text) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py new file mode 100644 index 0000000..d129213 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py @@ -0,0 +1,62 @@ +from manimlib.imports import* + +class TangenttoSurface(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + + #----graph of first function f(x,y) = -x**2-y**2 + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_D, YELLOW_E], + resolution = (20, 20)).scale(1) + f_text = TextMobject("Tangent plane at relative maxima").to_corner(UL).scale(0.5) + + #----graph of second function f(x,y) = -x**2+y**2 + f2 = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2+v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_D, RED_E], + resolution = (20, 20)).scale(1) + f2_text = TextMobject("Tangent plane at saddle point").to_corner(UL).scale(0.5) + + #----graph of third function f(x,y) = x**2+y**2 + f3 = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2+v**2 + ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_D, GREEN_E], + resolution = (20, 20)).scale(1) + f3_text = TextMobject("Tangent plane at relative minima").to_corner(UL).scale(0.5) + + self.set_camera_orientation(phi = 75 * DEGREES, theta = -45 * DEGREES ) + d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point + + r = Rectangle(height = 2,breadth = 1,color = PURPLE).scale(0.5) + + self.begin_ambient_camera_rotation(rate = 0.3) + self.add(axes) + self.play(Write(f),Write(d)) + self.wait(1) + self.add_fixed_in_frame_mobjects(f_text) + self.play(ShowCreation(r)) + self.wait(1) + self.play(FadeOut(r),FadeOut(f),FadeOut(d),FadeOut(f_text)) + self.wait(1) + self.play(Write(f2),Write(d)) + self.wait(1) + self.add_fixed_in_frame_mobjects(f2_text) + self.play(ShowCreation(r)) + self.wait(1) + self.play(FadeOut(r),FadeOut(f2),FadeOut(d),FadeOut(f2_text)) + self.wait(1) + self.play(Write(f3),Write(d)) + self.wait(1) + self.add_fixed_in_frame_mobjects(f3_text) + self.play(ShowCreation(r)) + self.wait(1) diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif Binary files differnew file mode 100644 index 0000000..3471e4d --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py new file mode 100644 index 0000000..84052cc --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py @@ -0,0 +1,78 @@ +from manimlib.imports import* + +#---- graphs of second-order partial derivatives of a function +class SurfacesAnimation(ThreeDScene): + def construct(self): + + axes = ThreeDAxes() + x_label = TextMobject('$x$').shift([5,0.5,0]) #---- x axis + y_label = TextMobject('$y$').shift([0.5,4,0]).rotate(-4.5) #---- y axis + + #---- surface of function: f(x,y) = (x^2+y^2)^2 + surface_f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + ((u**2)+(v**2))**2 + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[GREEN_D, GREEN_E]).scale(1) + + #---- surface of second-order partial derivative f_xx + surface_fxx = ParametricSurface( + lambda u, v: np.array([ + u, + v, + (3*u**2)+(v**2) + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(0.6) + + #---- surface of second-order partial derivative f_yy + surface_fyy = ParametricSurface( + lambda u, v: np.array([ + u, + v, + (u**2)+(3*v**2) + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[PURPLE_D, PURPLE_E]).scale(0.6).shift([0,0,0]) + + #---- surface of second-order partial derivative f_xy = f_yx + surface_fxy = ParametricSurface( + lambda u, v: np.array([ + u, + v, + 8*u*v + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_D, TEAL_E]).scale(0.6) + + f_text= TextMobject("$f(x,y) = (x^2+y^2)^2$",color = GREEN).scale(0.7).to_corner(UL) + + fxx_text= TextMobject("$f_{xx} = 12x^2+4y^2$ (Concavity along x axis)",color = YELLOW).scale(0.5).to_corner(UL) + + fyy_text= TextMobject("$f_{yy} = 4x^2+12y^2$(Concavity along y axis)",color = PURPLE).scale(0.5).to_corner(UL) + + fxy_text= TextMobject("$f_{xy} = f_{yx} = 8xy$ (Twisting of the function)",color = TEAL).scale(0.5).to_corner(UL) + + + self.set_camera_orientation(phi = 40 * DEGREES, theta = 45 * DEGREES) + self.begin_ambient_camera_rotation(rate = 0.1) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.add(x_label) + self.add(y_label) + self.wait(1) + self.play(Write(surface_f)) + self.wait(2) + self.play(FadeOut(f_text)) + + + self.play(ReplacementTransform(surface_f,surface_fxx)) + + self.add_fixed_in_frame_mobjects(fxx_text) + self.wait(2) + self.play(FadeOut(fxx_text)) + + self.play(ReplacementTransform(surface_fxx,surface_fyy)) + self.add_fixed_in_frame_mobjects(fyy_text) + self.wait(2) + self.play(FadeOut(fyy_text)) + + self.play(ReplacementTransform(surface_fyy,surface_fxy)) + self.move_camera(phi = 35 * DEGREES, theta = 80 * DEGREES) + self.add_fixed_in_frame_mobjects(fxy_text) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py new file mode 100644 index 0000000..c1e3516 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py @@ -0,0 +1,52 @@ +from manimlib.imports import* + +class firstscene(Scene): + def construct(self): + + h_text = TextMobject("Degenerate Hessian Matrix", color = RED).scale(1).shift(UP) + + + f_text = TextMobject("$f(x,y) = 2x^3+y^3$", color = TEAL).scale(1).to_corner(UL) + c_text = TextMobject("Critical Point: $(0,0)$", color = TEAL).scale(1).next_to(f_text).shift(DOWN+4.3*LEFT) + m_text = TextMobject("\\begin{equation*} D_2(x,y)= \\begin{vmatrix} 12x\\space & 0\\space \\\\ 0 & 6y \\end{vmatrix} \\end{equation*}",color = YELLOW) + d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 0 \\space & 0\\space \\\\ 0 & 0 \\end{vmatrix} \\end{equation*}",color = PURPLE) + + + t_text = TextMobject("$D_2 = 0$(Inconclusive)", color = TEAL).scale(1).shift(2*DOWN) + + self.play(ShowCreation(h_text)) + self.wait(1) + self.play(FadeOut(h_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(m_text)) + self.wait(2) + self.play(ReplacementTransform(m_text,d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(2) + + +class SecondScene(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + (2*u**3)+v**3 + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_C,YELLOW_D,BLUE_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=25 * DEGREES,theta = 80*DEGREES) + self.begin_ambient_camera_rotation(rate=0.1) + + f_text = TextMobject("$f(x,y) = 2x^3+y^3$",color = ORANGE).shift(2*DOWN+2*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py new file mode 100644 index 0000000..3056842 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py @@ -0,0 +1,145 @@ +from manimlib.imports import* + +class firstScene(Scene): + def construct(self): + + e_text = TextMobject("Case 3: One positive and one negative eigenvalue", color = YELLOW).scale(1).shift(3*UP+1*LEFT) + f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$").scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) + c_text = TextMobject("Critical Point: $(1,0)$").scale(0.8).next_to(f_text).shift(DOWN+4*LEFT) + d_text = TextMobject("\\begin{equation*} D_2(1,0)= \\begin{vmatrix} 2 \\space & 0\\space \\\\ 0 & -4 \\end{vmatrix} \\end{equation*}",color = GREEN).scale(0.9) + + t_text = TextMobject("$D_2 = -8<0$ (Saddle Point)", color = BLUE).scale(0.9).shift(2*DOWN) + + self.play(ShowCreation(e_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(2) + +class SaddlePoint(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2-2*v**2-2*u + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[RED_C,PURPLE_D,YELLOW_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=35 * DEGREES,theta=80*DEGREES) + self.begin_ambient_camera_rotation(rate=0.4) + + f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$",color = GREEN).shift(2*DOWN+2*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(3) + + +class secondScene(Scene): + def construct(self): + + h_text = TextMobject("NonDegenerate Hessian Matrix", color = GREEN).scale(1).shift(UP) + e_text = TextMobject("Case 1: Two positive eigenvalues", color = PINK).scale(1).shift(3*UP+2*LEFT) + f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = TEAL).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) + c_text = TextMobject("Critical Point: $(0,0)$",color = TEAL).scale(0.8).next_to(f_text).shift(DOWN+4.5*LEFT) + d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 4 \\space & -2\\space \\\\ -2 & 6 \\end{vmatrix} \\end{equation*}",color = PINK).scale(0.9) + + t_text = TextMobject("$D_2 = 20>0$ (Relative Maxima or Relative Minima)", color = YELLOW).scale(0.9).shift(1*DOWN) + tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =4 >0$ (Relative Minima)", color = YELLOW).scale(0.9).shift(2*DOWN) + + + self.play(ShowCreation(h_text)) + self.wait(1) + self.play(FadeOut(h_text)) + self.wait(1) + self.play(ShowCreation(e_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(1) + self.play(ShowCreation(tm_text)) + self.wait(2) + self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text)) + +class Minima(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + 2*u**2+3*v**2-2*v*u + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,YELLOW_D,GREEN_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=10 * DEGREES,theta=90*DEGREES) + self.begin_ambient_camera_rotation(rate=0.2) + + f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = PURPLE).shift(2*DOWN+3*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(2) + + +class thirdScene(Scene): + def construct(self): + + + e_text = TextMobject("Case 2: Two negative eigenvalues", color = RED).scale(1).shift(3*UP+2*LEFT) + f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = BLUE).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) + c_text = TextMobject("Critical Point: $(0,0)$",color = BLUE).scale(0.8).next_to(f_text).shift(DOWN+3.8*LEFT) + d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} -2 \\space & 0\\space \\\\ 0 & -8 \\end{vmatrix} \\end{equation*}",color = TEAL).scale(0.9) + + t_text = TextMobject("$D_2 = 16>0$ (Relative Maxima or Relative Minima)" ).scale(0.9).shift(1*DOWN) + tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =-2 <0$ (Relative Maxima)").scale(0.9).shift(2*DOWN) + + + self.play(ShowCreation(e_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(1) + self.play(ShowCreation(tm_text)) + self.wait(2) + self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text)) + + +class Maxima(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-4*v**2 + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,PURPLE_D,TEAL_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=75 * DEGREES) + self.begin_ambient_camera_rotation(rate=0.4) + + f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = YELLOW).shift(2*DOWN+3*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(1) + self.move_camera(phi=30*DEGREES,theta=45*DEGREES,run_time=5) + self.wait(2) diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif Binary files differnew file mode 100644 index 0000000..129fedc --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py new file mode 100644 index 0000000..d3084e2 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py @@ -0,0 +1,120 @@ +from manimlib.imports import* + +#---- contour diagram animation +class ContourDiagram(ThreeDScene): + def construct(self): + + heading = TextMobject("CONTOUR DIAGRAM", color = YELLOW).scale(1) + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis + + #---- surface of a paraboloid + surface = ParametricSurface( + lambda u, v: np.array([ + np.cos(v)*u, + np.sin(v)*u, + u**2 + ]),v_min = -2, v_max = 2, u_min = -2, u_max = 2, checkerboard_colors = [GREEN_B,GREEN_C,GREEN_D,GREEN_E]).shift([0,0,0]).scale(0.5) + + #---- first contour projection + contour1 = ParametricSurface( + lambda u, v: np.array([ + np.cos(TAU * v), + np.sin(TAU * v), + 2*(1 - 2.5*u) + ])).fade(0.5).scale(0.21).shift([0,0,1.01]) + + #---- first contour line + c_1 = Circle(color = BLUE).scale(0.21).shift([0,0,0]).rotate(0.1,DOWN) + + #------------------------------------------------- + + #---- second contour projection + contour2 = ParametricSurface( + lambda u, v: np.array([ + np.cos(TAU * v), + np.sin(TAU * v), + 2*(1 - 1.6*u) + ])).fade(0.5).scale(0.41).shift([0,0,0.3]).set_color(RED) + + #---- second contour line + c_2 = Circle(color = RED).scale(0.41).shift([0,0,0]).rotate(0.1,DOWN) + + #------------------------------------------------- + + #---- third contour projection + contour3 = ParametricSurface( + lambda u, v: np.array([ + np.cos(TAU * v), + np.sin(TAU * v), + 2*(1 - 1.5*u) + ])).fade(0.5).scale(0.61).shift([0,0,0.4]).set_color(YELLOW) + + #---- third contour line + c_3 = Circle(color = YELLOW).scale(0.61).shift([0,0,0]) + + #------------------------------------------------- + + #---- fourth contour projection + contour4 = ParametricSurface( + lambda u, v: np.array([ + np.cos(TAU * v), + np.sin(TAU * v), + 2*(1 - 1.5*u) + ])).fade(0.7).scale(0.81).shift([0,0,0.7]).set_color(PINK) + + #---- fourth contour line + c_4 = Circle(color = PINK).scale(0.81).shift([0,0,0]) + + #------------------------------------------------- + + #---- fifth contour projection + contour5 = ParametricSurface( + lambda u, v: np.array([ + np.cos(TAU * v), + np.sin(TAU * v), + 2*(1 - 1.5*u) + ])).fade(0.7).scale(1.01).shift([0,0,1]).set_color(PURPLE) + + #---- fifth contour line + c_5 = Circle(color = PURPLE).scale(1.01).shift([0,0,0]) + + c_text= TextMobject("Contour Lines").scale(0.5).shift(2*DOWN) + s = Square().scale(1.3) + + self.set_camera_orientation(phi = 75 * DEGREES, theta = 10 * DEGREES) + self.add_fixed_in_frame_mobjects(heading) + self.wait(1) + self.play(FadeOut(heading)) + self.wait(1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.play(Write(surface)) + self.wait(1) + self.add(contour1) + self.wait(1) + self.play(Write(c_1)) + self.play(ReplacementTransform(contour1,contour2)) + self.wait(1) + self.play(Write(c_2)) + self.play(ReplacementTransform(contour2,contour3)) + self.wait(1) + self.play(Write(c_3)) + self.play(ReplacementTransform(contour3,contour4)) + self.wait(1) + self.play(Write(c_4)) + self.play(ReplacementTransform(contour4,contour5)) + self.wait(1) + self.play(Write(c_5)) + self.wait(1) + self.play(FadeOut(contour5),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(surface),FadeOut(contour5),FadeOut(contour4),FadeOut(contour3),FadeOut(contour2),FadeOut(contour1)) + self.wait(1) + self.move_camera(phi=0 * DEGREES,theta= 90*DEGREES) + self.wait(1) + self.add_fixed_in_frame_mobjects(c_text) + self.wait(1) + self.play(ShowCreation(s),FadeOut(c_text)) + self.wait(1) |