summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h
blob: 9d890d4d6813868e305a5bd6f7d3c773c0d939b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <limits>
#include <cmath>

#include "general.h"
#include "nn_index.h"
#include "dist.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"


namespace cvflann
{

struct HierarchicalClusteringIndexParams : public IndexParams
{
    HierarchicalClusteringIndexParams(int branching = 32,
                                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
                                      int trees = 4, int leaf_size = 100)
    {
        (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
        // The branching factor used in the hierarchical clustering
        (*this)["branching"] = branching;
        // Algorithm used for picking the initial cluster centers
        (*this)["centers_init"] = centers_init;
        // number of parallel trees to build
        (*this)["trees"] = trees;
        // maximum leaf size
        (*this)["leaf_size"] = leaf_size;
    }
};


/**
 * Hierarchical index
 *
 * Contains a tree constructed through a hierarchical clustering
 * and other information for indexing a set of points for nearest-neighbour matching.
 */
template <typename Distance>
class HierarchicalClusteringIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;

private:


    typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);

    /**
     * The function used for choosing the cluster centers.
     */
    centersAlgFunction chooseCenters;



    /**
     * Chooses the initial centers in the k-means clustering in a random manner.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     *     indices_length = length of indices vector
     *
     */
    void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
    {
        UniqueRandom r(indices_length);

        int index;
        for (index=0; index<k; ++index) {
            bool duplicate = true;
            int rnd;
            while (duplicate) {
                duplicate = false;
                rnd = r.next();
                if (rnd<0) {
                    centers_length = index;
                    return;
                }

                centers[index] = dsindices[rnd];

                for (int j=0; j<index; ++j) {
                    DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
                    if (sq<1e-16) {
                        duplicate = true;
                    }
                }
            }
        }

        centers_length = index;
    }


    /**
     * Chooses the initial centers in the k-means using Gonzales' algorithm
     * so that the centers are spaced apart from each other.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
    {
        int n = indices_length;

        int rnd = rand_int(n);
        assert(rnd >=0 && rnd < n);

        centers[0] = dsindices[rnd];

        int index;
        for (index=1; index<k; ++index) {

            int best_index = -1;
            DistanceType best_val = 0;
            for (int j=0; j<n; ++j) {
                DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
                for (int i=1; i<index; ++i) {
                    DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
                    if (tmp_dist<dist) {
                        dist = tmp_dist;
                    }
                }
                if (dist>best_val) {
                    best_val = dist;
                    best_index = j;
                }
            }
            if (best_index!=-1) {
                centers[index] = dsindices[best_index];
            }
            else {
                break;
            }
        }
        centers_length = index;
    }


    /**
     * Chooses the initial centers in the k-means using the algorithm
     * proposed in the KMeans++ paper:
     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
     *
     * Implementation of this function was converted from the one provided in Arthur's code.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
    {
        int n = indices_length;

        double currentPot = 0;
        DistanceType* closestDistSq = new DistanceType[n];

        // Choose one random center and set the closestDistSq values
        int index = rand_int(n);
        assert(index >=0 && index < n);
        centers[0] = dsindices[index];

        // Computing distance^2 will have the advantage of even higher probability further to pick new centers
        // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
        for (int i = 0; i < n; i++) {
            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
            currentPot += closestDistSq[i];
        }


        const int numLocalTries = 1;

        // Choose each center
        int centerCount;
        for (centerCount = 1; centerCount < k; centerCount++) {

            // Repeat several trials
            double bestNewPot = -1;
            int bestNewIndex = 0;
            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {

                // Choose our center - have to be slightly careful to return a valid answer even accounting
                // for possible rounding errors
                double randVal = rand_double(currentPot);
                for (index = 0; index < n-1; index++) {
                    if (randVal <= closestDistSq[index]) break;
                    else randVal -= closestDistSq[index];
                }

                // Compute the new potential
                double newPot = 0;
                for (int i = 0; i < n; i++) {
                    DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
                }

                // Store the best result
                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
                    bestNewPot = newPot;
                    bestNewIndex = index;
                }
            }

            // Add the appropriate center
            centers[centerCount] = dsindices[bestNewIndex];
            currentPot = bestNewPot;
            for (int i = 0; i < n; i++) {
                DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
            }
        }

        centers_length = centerCount;

        delete[] closestDistSq;
    }


    /**
     * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
     * select the first point of the list as a candidate, then parse the points list. If another
     * point is further than current candidate from the other centers, test if it is a good center
     * of a local aggregation. If it is, replace current candidate by this point. And so on...
     *
     * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
     * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
     * class that pick centers among existing points instead of computing the barycenters, there is a real
     * improvement.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
    {
        const float kSpeedUpFactor = 1.3f;

        int n = indices_length;

        DistanceType* closestDistSq = new DistanceType[n];

        // Choose one random center and set the closestDistSq values
        int index = rand_int(n);
        assert(index >=0 && index < n);
        centers[0] = dsindices[index];

        for (int i = 0; i < n; i++) {
            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
        }


        // Choose each center
        int centerCount;
        for (centerCount = 1; centerCount < k; centerCount++) {

            // Repeat several trials
            double bestNewPot = -1;
            int bestNewIndex = 0;
            DistanceType furthest = 0;
            for (index = 0; index < n; index++) {

                // We will test only the potential of the points further than current candidate
                if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {

                    // Compute the new potential
                    double newPot = 0;
                    for (int i = 0; i < n; i++) {
                        newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
                                            , closestDistSq[i] );
                    }

                    // Store the best result
                    if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
                        bestNewPot = newPot;
                        bestNewIndex = index;
                        furthest = closestDistSq[index];
                    }
                }
            }

            // Add the appropriate center
            centers[centerCount] = dsindices[bestNewIndex];
            for (int i = 0; i < n; i++) {
                closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
                                             , closestDistSq[i] );
            }
        }

        centers_length = centerCount;

        delete[] closestDistSq;
    }


public:


    /**
     * Index constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the hierarchical k-means algorithm
     */
    HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
                                Distance d = Distance())
        : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
    {
        memoryCounter = 0;

        size_ = dataset.rows;
        veclen_ = dataset.cols;

        branching_ = get_param(params,"branching",32);
        centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
        trees_ = get_param(params,"trees",4);
        leaf_size_ = get_param(params,"leaf_size",100);

        if (centers_init_==FLANN_CENTERS_RANDOM) {
            chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
        }
        else if (centers_init_==FLANN_CENTERS_GONZALES) {
            chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
        }
        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
            chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
        }
        else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
            chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
        }
        else {
            throw FLANNException("Unknown algorithm for choosing initial centers.");
        }

        trees_ = get_param(params,"trees",4);
        root = new NodePtr[trees_];
        indices = new int*[trees_];

        for (int i=0; i<trees_; ++i) {
            root[i] = NULL;
            indices[i] = NULL;
        }
    }

    HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
    HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);

    /**
     * Index destructor.
     *
     * Release the memory used by the index.
     */
    virtual ~HierarchicalClusteringIndex()
    {
        free_elements();

        if (root!=NULL) {
            delete[] root;
        }

        if (indices!=NULL) {
            delete[] indices;
        }
    }


    /**
     * Release the inner elements of indices[]
     */
    void free_elements()
    {
        if (indices!=NULL) {
            for(int i=0; i<trees_; ++i) {
                if (indices[i]!=NULL) {
                    delete[] indices[i];
                    indices[i] = NULL;
                }
            }
        }
    }


    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return veclen_;
    }


    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return pool.usedMemory+pool.wastedMemory+memoryCounter;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        if (branching_<2) {
            throw FLANNException("Branching factor must be at least 2");
        }

        free_elements();

        for (int i=0; i<trees_; ++i) {
            indices[i] = new int[size_];
            for (size_t j=0; j<size_; ++j) {
                indices[i][j] = (int)j;
            }
            root[i] = pool.allocate<Node>();
            computeClustering(root[i], indices[i], (int)size_, branching_,0);
        }
    }


    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_HIERARCHICAL;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, branching_);
        save_value(stream, trees_);
        save_value(stream, centers_init_);
        save_value(stream, leaf_size_);
        save_value(stream, memoryCounter);
        for (int i=0; i<trees_; ++i) {
            save_value(stream, *indices[i], size_);
            save_tree(stream, root[i], i);
        }

    }


    void loadIndex(FILE* stream)
    {
        free_elements();

        if (root!=NULL) {
            delete[] root;
        }

        if (indices!=NULL) {
            delete[] indices;
        }

        load_value(stream, branching_);
        load_value(stream, trees_);
        load_value(stream, centers_init_);
        load_value(stream, leaf_size_);
        load_value(stream, memoryCounter);

        indices = new int*[trees_];
        root = new NodePtr[trees_];
        for (int i=0; i<trees_; ++i) {
            indices[i] = new int[size_];
            load_value(stream, *indices[i], size_);
            load_tree(stream, root[i], i);
        }

        params["algorithm"] = getType();
        params["branching"] = branching_;
        params["trees"] = trees_;
        params["centers_init"] = centers_init_;
        params["leaf_size"] = leaf_size_;
    }


    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     searchParams = parameters that influence the search algorithm (checks)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {

        int maxChecks = get_param(searchParams,"checks",32);

        // Priority queue storing intermediate branches in the best-bin-first search
        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);

        std::vector<bool> checked(size_,false);
        int checks = 0;
        for (int i=0; i<trees_; ++i) {
            findNN(root[i], result, vec, checks, maxChecks, heap, checked);
        }

        BranchSt branch;
        while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
            NodePtr node = branch.node;
            findNN(node, result, vec, checks, maxChecks, heap, checked);
        }
        assert(result.full());

        delete heap;

    }

    IndexParams getParameters() const
    {
        return params;
    }


private:

    /**
     * Struture representing a node in the hierarchical k-means tree.
     */
    struct Node
    {
        /**
         * The cluster center index
         */
        int pivot;
        /**
         * The cluster size (number of points in the cluster)
         */
        int size;
        /**
         * Child nodes (only for non-terminal nodes)
         */
        Node** childs;
        /**
         * Node points (only for terminal nodes)
         */
        int* indices;
        /**
         * Level
         */
        int level;
    };
    typedef Node* NodePtr;



    /**
     * Alias definition for a nicer syntax.
     */
    typedef BranchStruct<NodePtr, DistanceType> BranchSt;



    void save_tree(FILE* stream, NodePtr node, int num)
    {
        save_value(stream, *node);
        if (node->childs==NULL) {
            int indices_offset = (int)(node->indices - indices[num]);
            save_value(stream, indices_offset);
        }
        else {
            for(int i=0; i<branching_; ++i) {
                save_tree(stream, node->childs[i], num);
            }
        }
    }


    void load_tree(FILE* stream, NodePtr& node, int num)
    {
        node = pool.allocate<Node>();
        load_value(stream, *node);
        if (node->childs==NULL) {
            int indices_offset;
            load_value(stream, indices_offset);
            node->indices = indices[num] + indices_offset;
        }
        else {
            node->childs = pool.allocate<NodePtr>(branching_);
            for(int i=0; i<branching_; ++i) {
                load_tree(stream, node->childs[i], num);
            }
        }
    }




    void computeLabels(int* dsindices, int indices_length,  int* centers, int centers_length, int* labels, DistanceType& cost)
    {
        cost = 0;
        for (int i=0; i<indices_length; ++i) {
            ElementType* point = dataset[dsindices[i]];
            DistanceType dist = distance(point, dataset[centers[0]], veclen_);
            labels[i] = 0;
            for (int j=1; j<centers_length; ++j) {
                DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
                if (dist>new_dist) {
                    labels[i] = j;
                    dist = new_dist;
                }
            }
            cost += dist;
        }
    }

    /**
     * The method responsible with actually doing the recursive hierarchical
     * clustering
     *
     * Params:
     *     node = the node to cluster
     *     indices = indices of the points belonging to the current node
     *     branching = the branching factor to use in the clustering
     *
     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
     */
    void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
    {
        node->size = indices_length;
        node->level = level;

        if (indices_length < leaf_size_) { // leaf node
            node->indices = dsindices;
            std::sort(node->indices,node->indices+indices_length);
            node->childs = NULL;
            return;
        }

        std::vector<int> centers(branching);
        std::vector<int> labels(indices_length);

        int centers_length;
        (this->*chooseCenters)(branching, dsindices, indices_length, &centers[0], centers_length);

        if (centers_length<branching) {
            node->indices = dsindices;
            std::sort(node->indices,node->indices+indices_length);
            node->childs = NULL;
            return;
        }


        //	assign points to clusters
        DistanceType cost;
        computeLabels(dsindices, indices_length, &centers[0], centers_length, &labels[0], cost);

        node->childs = pool.allocate<NodePtr>(branching);
        int start = 0;
        int end = start;
        for (int i=0; i<branching; ++i) {
            for (int j=0; j<indices_length; ++j) {
                if (labels[j]==i) {
                    std::swap(dsindices[j],dsindices[end]);
                    std::swap(labels[j],labels[end]);
                    end++;
                }
            }

            node->childs[i] = pool.allocate<Node>();
            node->childs[i]->pivot = centers[i];
            node->childs[i]->indices = NULL;
            computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
            start=end;
        }
    }



    /**
     * Performs one descent in the hierarchical k-means tree. The branches not
     * visited are stored in a priority queue.
     *
     * Params:
     *      node = node to explore
     *      result = container for the k-nearest neighbors found
     *      vec = query points
     *      checks = how many points in the dataset have been checked so far
     *      maxChecks = maximum dataset points to checks
     */


    void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
                Heap<BranchSt>* heap, std::vector<bool>& checked)
    {
        if (node->childs==NULL) {
            if (checks>=maxChecks) {
                if (result.full()) return;
            }
            for (int i=0; i<node->size; ++i) {
                int index = node->indices[i];
                if (!checked[index]) {
                    DistanceType dist = distance(dataset[index], vec, veclen_);
                    result.addPoint(dist, index);
                    checked[index] = true;
                    ++checks;
                }
            }
        }
        else {
            DistanceType* domain_distances = new DistanceType[branching_];
            int best_index = 0;
            domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
            for (int i=1; i<branching_; ++i) {
                domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
                if (domain_distances[i]<domain_distances[best_index]) {
                    best_index = i;
                }
            }
            for (int i=0; i<branching_; ++i) {
                if (i!=best_index) {
                    heap->insert(BranchSt(node->childs[i],domain_distances[i]));
                }
            }
            delete[] domain_distances;
            findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
        }
    }

private:


    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset;

    /**
     * Parameters used by this index
     */
    IndexParams params;


    /**
     * Number of features in the dataset.
     */
    size_t size_;

    /**
     * Length of each feature.
     */
    size_t veclen_;

    /**
     * The root node in the tree.
     */
    NodePtr* root;

    /**
     *  Array of indices to vectors in the dataset.
     */
    int** indices;


    /**
     * The distance
     */
    Distance distance;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool;

    /**
     * Memory occupied by the index.
     */
    int memoryCounter;

    /** index parameters */
    int branching_;
    int trees_;
    flann_centers_init_t centers_init_;
    int leaf_size_;


};

}

#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */