summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h
downloadFOSSEE_Image_Processing_Toolbox-master.tar.gz
FOSSEE_Image_Processing_Toolbox-master.tar.bz2
FOSSEE_Image_Processing_Toolbox-master.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h')
-rw-r--r--thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h848
1 files changed, 848 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h b/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h
new file mode 100644
index 0000000..9d890d4
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h
@@ -0,0 +1,848 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
+#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <limits>
+#include <cmath>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dist.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+
+namespace cvflann
+{
+
+struct HierarchicalClusteringIndexParams : public IndexParams
+{
+ HierarchicalClusteringIndexParams(int branching = 32,
+ flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
+ int trees = 4, int leaf_size = 100)
+ {
+ (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
+ // The branching factor used in the hierarchical clustering
+ (*this)["branching"] = branching;
+ // Algorithm used for picking the initial cluster centers
+ (*this)["centers_init"] = centers_init;
+ // number of parallel trees to build
+ (*this)["trees"] = trees;
+ // maximum leaf size
+ (*this)["leaf_size"] = leaf_size;
+ }
+};
+
+
+/**
+ * Hierarchical index
+ *
+ * Contains a tree constructed through a hierarchical clustering
+ * and other information for indexing a set of points for nearest-neighbour matching.
+ */
+template <typename Distance>
+class HierarchicalClusteringIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+private:
+
+
+ typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
+
+ /**
+ * The function used for choosing the cluster centers.
+ */
+ centersAlgFunction chooseCenters;
+
+
+
+ /**
+ * Chooses the initial centers in the k-means clustering in a random manner.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * indices_length = length of indices vector
+ *
+ */
+ void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ UniqueRandom r(indices_length);
+
+ int index;
+ for (index=0; index<k; ++index) {
+ bool duplicate = true;
+ int rnd;
+ while (duplicate) {
+ duplicate = false;
+ rnd = r.next();
+ if (rnd<0) {
+ centers_length = index;
+ return;
+ }
+
+ centers[index] = dsindices[rnd];
+
+ for (int j=0; j<index; ++j) {
+ DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
+ if (sq<1e-16) {
+ duplicate = true;
+ }
+ }
+ }
+ }
+
+ centers_length = index;
+ }
+
+
+ /**
+ * Chooses the initial centers in the k-means using Gonzales' algorithm
+ * so that the centers are spaced apart from each other.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ int n = indices_length;
+
+ int rnd = rand_int(n);
+ assert(rnd >=0 && rnd < n);
+
+ centers[0] = dsindices[rnd];
+
+ int index;
+ for (index=1; index<k; ++index) {
+
+ int best_index = -1;
+ DistanceType best_val = 0;
+ for (int j=0; j<n; ++j) {
+ DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
+ for (int i=1; i<index; ++i) {
+ DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
+ if (tmp_dist<dist) {
+ dist = tmp_dist;
+ }
+ }
+ if (dist>best_val) {
+ best_val = dist;
+ best_index = j;
+ }
+ }
+ if (best_index!=-1) {
+ centers[index] = dsindices[best_index];
+ }
+ else {
+ break;
+ }
+ }
+ centers_length = index;
+ }
+
+
+ /**
+ * Chooses the initial centers in the k-means using the algorithm
+ * proposed in the KMeans++ paper:
+ * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+ *
+ * Implementation of this function was converted from the one provided in Arthur's code.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ int n = indices_length;
+
+ double currentPot = 0;
+ DistanceType* closestDistSq = new DistanceType[n];
+
+ // Choose one random center and set the closestDistSq values
+ int index = rand_int(n);
+ assert(index >=0 && index < n);
+ centers[0] = dsindices[index];
+
+ // Computing distance^2 will have the advantage of even higher probability further to pick new centers
+ // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
+ currentPot += closestDistSq[i];
+ }
+
+
+ const int numLocalTries = 1;
+
+ // Choose each center
+ int centerCount;
+ for (centerCount = 1; centerCount < k; centerCount++) {
+
+ // Repeat several trials
+ double bestNewPot = -1;
+ int bestNewIndex = 0;
+ for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
+
+ // Choose our center - have to be slightly careful to return a valid answer even accounting
+ // for possible rounding errors
+ double randVal = rand_double(currentPot);
+ for (index = 0; index < n-1; index++) {
+ if (randVal <= closestDistSq[index]) break;
+ else randVal -= closestDistSq[index];
+ }
+
+ // Compute the new potential
+ double newPot = 0;
+ for (int i = 0; i < n; i++) {
+ DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+ }
+
+ // Store the best result
+ if ((bestNewPot < 0)||(newPot < bestNewPot)) {
+ bestNewPot = newPot;
+ bestNewIndex = index;
+ }
+ }
+
+ // Add the appropriate center
+ centers[centerCount] = dsindices[bestNewIndex];
+ currentPot = bestNewPot;
+ for (int i = 0; i < n; i++) {
+ DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
+ closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+ }
+ }
+
+ centers_length = centerCount;
+
+ delete[] closestDistSq;
+ }
+
+
+ /**
+ * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
+ * select the first point of the list as a candidate, then parse the points list. If another
+ * point is further than current candidate from the other centers, test if it is a good center
+ * of a local aggregation. If it is, replace current candidate by this point. And so on...
+ *
+ * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
+ * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
+ * class that pick centers among existing points instead of computing the barycenters, there is a real
+ * improvement.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ const float kSpeedUpFactor = 1.3f;
+
+ int n = indices_length;
+
+ DistanceType* closestDistSq = new DistanceType[n];
+
+ // Choose one random center and set the closestDistSq values
+ int index = rand_int(n);
+ assert(index >=0 && index < n);
+ centers[0] = dsindices[index];
+
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ }
+
+
+ // Choose each center
+ int centerCount;
+ for (centerCount = 1; centerCount < k; centerCount++) {
+
+ // Repeat several trials
+ double bestNewPot = -1;
+ int bestNewIndex = 0;
+ DistanceType furthest = 0;
+ for (index = 0; index < n; index++) {
+
+ // We will test only the potential of the points further than current candidate
+ if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
+
+ // Compute the new potential
+ double newPot = 0;
+ for (int i = 0; i < n; i++) {
+ newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
+ , closestDistSq[i] );
+ }
+
+ // Store the best result
+ if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
+ bestNewPot = newPot;
+ bestNewIndex = index;
+ furthest = closestDistSq[index];
+ }
+ }
+ }
+
+ // Add the appropriate center
+ centers[centerCount] = dsindices[bestNewIndex];
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
+ , closestDistSq[i] );
+ }
+ }
+
+ centers_length = centerCount;
+
+ delete[] closestDistSq;
+ }
+
+
+public:
+
+
+ /**
+ * Index constructor
+ *
+ * Params:
+ * inputData = dataset with the input features
+ * params = parameters passed to the hierarchical k-means algorithm
+ */
+ HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
+ Distance d = Distance())
+ : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
+ {
+ memoryCounter = 0;
+
+ size_ = dataset.rows;
+ veclen_ = dataset.cols;
+
+ branching_ = get_param(params,"branching",32);
+ centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
+ trees_ = get_param(params,"trees",4);
+ leaf_size_ = get_param(params,"leaf_size",100);
+
+ if (centers_init_==FLANN_CENTERS_RANDOM) {
+ chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
+ }
+ else if (centers_init_==FLANN_CENTERS_GONZALES) {
+ chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
+ }
+ else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
+ chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
+ }
+ else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
+ chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
+ }
+ else {
+ throw FLANNException("Unknown algorithm for choosing initial centers.");
+ }
+
+ trees_ = get_param(params,"trees",4);
+ root = new NodePtr[trees_];
+ indices = new int*[trees_];
+
+ for (int i=0; i<trees_; ++i) {
+ root[i] = NULL;
+ indices[i] = NULL;
+ }
+ }
+
+ HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
+ HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
+
+ /**
+ * Index destructor.
+ *
+ * Release the memory used by the index.
+ */
+ virtual ~HierarchicalClusteringIndex()
+ {
+ free_elements();
+
+ if (root!=NULL) {
+ delete[] root;
+ }
+
+ if (indices!=NULL) {
+ delete[] indices;
+ }
+ }
+
+
+ /**
+ * Release the inner elements of indices[]
+ */
+ void free_elements()
+ {
+ if (indices!=NULL) {
+ for(int i=0; i<trees_; ++i) {
+ if (indices[i]!=NULL) {
+ delete[] indices[i];
+ indices[i] = NULL;
+ }
+ }
+ }
+ }
+
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return veclen_;
+ }
+
+
+ /**
+ * Computes the inde memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return pool.usedMemory+pool.wastedMemory+memoryCounter;
+ }
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ if (branching_<2) {
+ throw FLANNException("Branching factor must be at least 2");
+ }
+
+ free_elements();
+
+ for (int i=0; i<trees_; ++i) {
+ indices[i] = new int[size_];
+ for (size_t j=0; j<size_; ++j) {
+ indices[i][j] = (int)j;
+ }
+ root[i] = pool.allocate<Node>();
+ computeClustering(root[i], indices[i], (int)size_, branching_,0);
+ }
+ }
+
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_HIERARCHICAL;
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream, branching_);
+ save_value(stream, trees_);
+ save_value(stream, centers_init_);
+ save_value(stream, leaf_size_);
+ save_value(stream, memoryCounter);
+ for (int i=0; i<trees_; ++i) {
+ save_value(stream, *indices[i], size_);
+ save_tree(stream, root[i], i);
+ }
+
+ }
+
+
+ void loadIndex(FILE* stream)
+ {
+ free_elements();
+
+ if (root!=NULL) {
+ delete[] root;
+ }
+
+ if (indices!=NULL) {
+ delete[] indices;
+ }
+
+ load_value(stream, branching_);
+ load_value(stream, trees_);
+ load_value(stream, centers_init_);
+ load_value(stream, leaf_size_);
+ load_value(stream, memoryCounter);
+
+ indices = new int*[trees_];
+ root = new NodePtr[trees_];
+ for (int i=0; i<trees_; ++i) {
+ indices[i] = new int[size_];
+ load_value(stream, *indices[i], size_);
+ load_tree(stream, root[i], i);
+ }
+
+ params["algorithm"] = getType();
+ params["branching"] = branching_;
+ params["trees"] = trees_;
+ params["centers_init"] = centers_init_;
+ params["leaf_size"] = leaf_size_;
+ }
+
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * searchParams = parameters that influence the search algorithm (checks)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+
+ int maxChecks = get_param(searchParams,"checks",32);
+
+ // Priority queue storing intermediate branches in the best-bin-first search
+ Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+
+ std::vector<bool> checked(size_,false);
+ int checks = 0;
+ for (int i=0; i<trees_; ++i) {
+ findNN(root[i], result, vec, checks, maxChecks, heap, checked);
+ }
+
+ BranchSt branch;
+ while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
+ NodePtr node = branch.node;
+ findNN(node, result, vec, checks, maxChecks, heap, checked);
+ }
+ assert(result.full());
+
+ delete heap;
+
+ }
+
+ IndexParams getParameters() const
+ {
+ return params;
+ }
+
+
+private:
+
+ /**
+ * Struture representing a node in the hierarchical k-means tree.
+ */
+ struct Node
+ {
+ /**
+ * The cluster center index
+ */
+ int pivot;
+ /**
+ * The cluster size (number of points in the cluster)
+ */
+ int size;
+ /**
+ * Child nodes (only for non-terminal nodes)
+ */
+ Node** childs;
+ /**
+ * Node points (only for terminal nodes)
+ */
+ int* indices;
+ /**
+ * Level
+ */
+ int level;
+ };
+ typedef Node* NodePtr;
+
+
+
+ /**
+ * Alias definition for a nicer syntax.
+ */
+ typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+
+
+
+ void save_tree(FILE* stream, NodePtr node, int num)
+ {
+ save_value(stream, *node);
+ if (node->childs==NULL) {
+ int indices_offset = (int)(node->indices - indices[num]);
+ save_value(stream, indices_offset);
+ }
+ else {
+ for(int i=0; i<branching_; ++i) {
+ save_tree(stream, node->childs[i], num);
+ }
+ }
+ }
+
+
+ void load_tree(FILE* stream, NodePtr& node, int num)
+ {
+ node = pool.allocate<Node>();
+ load_value(stream, *node);
+ if (node->childs==NULL) {
+ int indices_offset;
+ load_value(stream, indices_offset);
+ node->indices = indices[num] + indices_offset;
+ }
+ else {
+ node->childs = pool.allocate<NodePtr>(branching_);
+ for(int i=0; i<branching_; ++i) {
+ load_tree(stream, node->childs[i], num);
+ }
+ }
+ }
+
+
+
+
+ void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
+ {
+ cost = 0;
+ for (int i=0; i<indices_length; ++i) {
+ ElementType* point = dataset[dsindices[i]];
+ DistanceType dist = distance(point, dataset[centers[0]], veclen_);
+ labels[i] = 0;
+ for (int j=1; j<centers_length; ++j) {
+ DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
+ if (dist>new_dist) {
+ labels[i] = j;
+ dist = new_dist;
+ }
+ }
+ cost += dist;
+ }
+ }
+
+ /**
+ * The method responsible with actually doing the recursive hierarchical
+ * clustering
+ *
+ * Params:
+ * node = the node to cluster
+ * indices = indices of the points belonging to the current node
+ * branching = the branching factor to use in the clustering
+ *
+ * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+ */
+ void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
+ {
+ node->size = indices_length;
+ node->level = level;
+
+ if (indices_length < leaf_size_) { // leaf node
+ node->indices = dsindices;
+ std::sort(node->indices,node->indices+indices_length);
+ node->childs = NULL;
+ return;
+ }
+
+ std::vector<int> centers(branching);
+ std::vector<int> labels(indices_length);
+
+ int centers_length;
+ (this->*chooseCenters)(branching, dsindices, indices_length, &centers[0], centers_length);
+
+ if (centers_length<branching) {
+ node->indices = dsindices;
+ std::sort(node->indices,node->indices+indices_length);
+ node->childs = NULL;
+ return;
+ }
+
+
+ // assign points to clusters
+ DistanceType cost;
+ computeLabels(dsindices, indices_length, &centers[0], centers_length, &labels[0], cost);
+
+ node->childs = pool.allocate<NodePtr>(branching);
+ int start = 0;
+ int end = start;
+ for (int i=0; i<branching; ++i) {
+ for (int j=0; j<indices_length; ++j) {
+ if (labels[j]==i) {
+ std::swap(dsindices[j],dsindices[end]);
+ std::swap(labels[j],labels[end]);
+ end++;
+ }
+ }
+
+ node->childs[i] = pool.allocate<Node>();
+ node->childs[i]->pivot = centers[i];
+ node->childs[i]->indices = NULL;
+ computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
+ start=end;
+ }
+ }
+
+
+
+ /**
+ * Performs one descent in the hierarchical k-means tree. The branches not
+ * visited are stored in a priority queue.
+ *
+ * Params:
+ * node = node to explore
+ * result = container for the k-nearest neighbors found
+ * vec = query points
+ * checks = how many points in the dataset have been checked so far
+ * maxChecks = maximum dataset points to checks
+ */
+
+
+ void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
+ Heap<BranchSt>* heap, std::vector<bool>& checked)
+ {
+ if (node->childs==NULL) {
+ if (checks>=maxChecks) {
+ if (result.full()) return;
+ }
+ for (int i=0; i<node->size; ++i) {
+ int index = node->indices[i];
+ if (!checked[index]) {
+ DistanceType dist = distance(dataset[index], vec, veclen_);
+ result.addPoint(dist, index);
+ checked[index] = true;
+ ++checks;
+ }
+ }
+ }
+ else {
+ DistanceType* domain_distances = new DistanceType[branching_];
+ int best_index = 0;
+ domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
+ for (int i=1; i<branching_; ++i) {
+ domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
+ if (domain_distances[i]<domain_distances[best_index]) {
+ best_index = i;
+ }
+ }
+ for (int i=0; i<branching_; ++i) {
+ if (i!=best_index) {
+ heap->insert(BranchSt(node->childs[i],domain_distances[i]));
+ }
+ }
+ delete[] domain_distances;
+ findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
+ }
+ }
+
+private:
+
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset;
+
+ /**
+ * Parameters used by this index
+ */
+ IndexParams params;
+
+
+ /**
+ * Number of features in the dataset.
+ */
+ size_t size_;
+
+ /**
+ * Length of each feature.
+ */
+ size_t veclen_;
+
+ /**
+ * The root node in the tree.
+ */
+ NodePtr* root;
+
+ /**
+ * Array of indices to vectors in the dataset.
+ */
+ int** indices;
+
+
+ /**
+ * The distance
+ */
+ Distance distance;
+
+ /**
+ * Pooled memory allocator.
+ *
+ * Using a pooled memory allocator is more efficient
+ * than allocating memory directly when there is a large
+ * number small of memory allocations.
+ */
+ PooledAllocator pool;
+
+ /**
+ * Memory occupied by the index.
+ */
+ int memoryCounter;
+
+ /** index parameters */
+ int branching_;
+ int trees_;
+ flann_centers_init_t centers_init_;
+ int leaf_size_;
+
+
+};
+
+}
+
+#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */