1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef __OPENCV_RGBD_HPP__
#define __OPENCV_RGBD_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
#include <limits>
/** @defgroup rgbd RGB-Depth Processing
*/
namespace cv
{
namespace rgbd
{
//! @addtogroup rgbd
//! @{
/** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is
* a limit. For a float/double, we just check if it is a NaN
* @param depth the depth to check for validity
*/
CV_EXPORTS
inline bool
isValidDepth(const float & depth)
{
return !cvIsNaN(depth);
}
CV_EXPORTS
inline bool
isValidDepth(const double & depth)
{
return !cvIsNaN(depth);
}
CV_EXPORTS
inline bool
isValidDepth(const short int & depth)
{
return (depth != std::numeric_limits<short int>::min()) && (depth != std::numeric_limits<short int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const unsigned short int & depth)
{
return (depth != std::numeric_limits<unsigned short int>::min())
&& (depth != std::numeric_limits<unsigned short int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const int & depth)
{
return (depth != std::numeric_limits<int>::min()) && (depth != std::numeric_limits<int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const unsigned int & depth)
{
return (depth != std::numeric_limits<unsigned int>::min()) && (depth != std::numeric_limits<unsigned int>::max());
}
/** Object that can compute the normals in an image.
* It is an object as it can cache data for speed efficiency
* The implemented methods are either:
* - FALS (the fastest) and SRI from
* ``Fast and Accurate Computation of Surface Normals from Range Images``
* by H. Badino, D. Huber, Y. Park and T. Kanade
* - the normals with bilateral filtering on a depth image from
* ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects``
* by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit
*/
class CV_EXPORTS RgbdNormals: public Algorithm
{
public:
enum RGBD_NORMALS_METHOD
{
RGBD_NORMALS_METHOD_FALS, RGBD_NORMALS_METHOD_LINEMOD, RGBD_NORMALS_METHOD_SRI
};
RgbdNormals()
:
rows_(0),
cols_(0),
depth_(0),
K_(Mat()),
window_size_(0),
method_(RGBD_NORMALS_METHOD_FALS),
rgbd_normals_impl_(0)
{
}
/** Constructor
* @param rows the number of rows of the depth image normals will be computed on
* @param cols the number of cols of the depth image normals will be computed on
* @param depth the depth of the normals (only CV_32F or CV_64F)
* @param K the calibration matrix to use
* @param window_size the window size to compute the normals: can only be 1,3,5 or 7
* @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
*/
RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method =
RGBD_NORMALS_METHOD_FALS);
~RgbdNormals();
/** Given a set of 3d points in a depth image, compute the normals at each point.
* @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
* @param normals a rows x cols x 3 matrix
*/
void
operator()(InputArray points, OutputArray normals) const;
/** Initializes some data that is cached for later computation
* If that function is not called, it will be called the first time normals are computed
*/
void
initialize() const;
int getRows() const
{
return rows_;
}
void setRows(int val)
{
rows_ = val;
}
int getCols() const
{
return cols_;
}
void setCols(int val)
{
cols_ = val;
}
int getWindowSize() const
{
return window_size_;
}
void setWindowSize(int val)
{
window_size_ = val;
}
int getDepth() const
{
return depth_;
}
void setDepth(int val)
{
depth_ = val;
}
cv::Mat getK() const
{
return K_;
}
void setK(const cv::Mat &val)
{
K_ = val;
}
int getMethod() const
{
return method_;
}
void setMethod(int val)
{
method_ = val;
}
protected:
void
initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const;
int rows_, cols_, depth_;
Mat K_;
int window_size_;
int method_;
mutable void* rgbd_normals_impl_;
};
/** Object that can clean a noisy depth image
*/
class CV_EXPORTS DepthCleaner: public Algorithm
{
public:
/** NIL method is from
* ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking``
* by C. Nguyen, S. Izadi, D. Lovel
*/
enum DEPTH_CLEANER_METHOD
{
DEPTH_CLEANER_NIL
};
DepthCleaner()
:
depth_(0),
window_size_(0),
method_(DEPTH_CLEANER_NIL),
depth_cleaner_impl_(0)
{
}
/** Constructor
* @param depth the depth of the normals (only CV_32F or CV_64F)
* @param window_size the window size to compute the normals: can only be 1,3,5 or 7
* @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
*/
DepthCleaner(int depth, int window_size = 5, int method = DEPTH_CLEANER_NIL);
~DepthCleaner();
/** Given a set of 3d points in a depth image, compute the normals at each point.
* @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
* @param depth a rows x cols matrix of the cleaned up depth
*/
void
operator()(InputArray points, OutputArray depth) const;
/** Initializes some data that is cached for later computation
* If that function is not called, it will be called the first time normals are computed
*/
void
initialize() const;
int getWindowSize() const
{
return window_size_;
}
void setWindowSize(int val)
{
window_size_ = val;
}
int getDepth() const
{
return depth_;
}
void setDepth(int val)
{
depth_ = val;
}
int getMethod() const
{
return method_;
}
void setMethod(int val)
{
method_ = val;
}
protected:
void
initialize_cleaner_impl() const;
int depth_;
int window_size_;
int method_;
mutable void* depth_cleaner_impl_;
};
/** Registers depth data to an external camera
* Registration is performed by creating a depth cloud, transforming the cloud by
* the rigid body transformation between the cameras, and then projecting the
* transformed points into the RGB camera.
*
* uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir
*
* Currently does not check for negative depth values.
*
* @param unregisteredCameraMatrix the camera matrix of the depth camera
* @param registeredCameraMatrix the camera matrix of the external camera
* @param registeredDistCoeffs the distortion coefficients of the external camera
* @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame.
* @param unregisteredDepth the input depth data
* @param outputImagePlaneSize the image plane dimensions of the external camera (width, height)
* @param registeredDepth the result of transforming the depth into the external camera
* @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional)
*/
CV_EXPORTS
void
registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs,
InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize,
OutputArray registeredDepth, bool depthDilation=false);
/**
* @param depth the depth image
* @param in_K
* @param in_points the list of xy coordinates
* @param points3d the resulting 3d points
*/
CV_EXPORTS
void
depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d);
/** Converts a depth image to an organized set of 3d points.
* The coordinate system is x pointing left, y down and z away from the camera
* @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
* (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters)
* @param K The calibration matrix
* @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the
* depth of `K` if `depth` is of depth CV_U
* @param mask the mask of the points to consider (can be empty)
*/
CV_EXPORTS
void
depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray());
/** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided
* by 1000 to get a depth in meters, and the values 0 are converted to std::numeric_limits<float>::quiet_NaN()
* Otherwise, the image is simply converted to floats
* @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
* (as done with the Microsoft Kinect), it is assumed in meters)
* @param depth the desired output depth (floats or double)
* @param out The rescaled float depth image
*/
CV_EXPORTS
void
rescaleDepth(InputArray in, int depth, OutputArray out);
/** Object that can compute planes in an image
*/
class CV_EXPORTS RgbdPlane: public Algorithm
{
public:
enum RGBD_PLANE_METHOD
{
RGBD_PLANE_METHOD_DEFAULT
};
RgbdPlane(RGBD_PLANE_METHOD method = RGBD_PLANE_METHOD_DEFAULT)
:
method_(method),
block_size_(40),
min_size_(block_size_*block_size_),
threshold_(0.01),
sensor_error_a_(0),
sensor_error_b_(0),
sensor_error_c_(0)
{
}
/** Find The planes in a depth image
* @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
* @param normals the normals for every point in the depth image
* @param mask An image where each pixel is labeled with the plane it belongs to
* and 255 if it does not belong to any plane
* @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1
* and c < 0 (so that the normal points towards the camera)
*/
void
operator()(InputArray points3d, InputArray normals, OutputArray mask,
OutputArray plane_coefficients);
/** Find The planes in a depth image but without doing a normal check, which is faster but less accurate
* @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
* @param mask An image where each pixel is labeled with the plane it belongs to
* and 255 if it does not belong to any plane
* @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0
*/
void
operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients);
int getBlockSize() const
{
return block_size_;
}
void setBlockSize(int val)
{
block_size_ = val;
}
int getMinSize() const
{
return min_size_;
}
void setMinSize(int val)
{
min_size_ = val;
}
int getMethod() const
{
return method_;
}
void setMethod(int val)
{
method_ = val;
}
double getThreshold() const
{
return threshold_;
}
void setThreshold(double val)
{
threshold_ = val;
}
double getSensorErrorA() const
{
return sensor_error_a_;
}
void setSensorErrorA(double val)
{
sensor_error_a_ = val;
}
double getSensorErrorB() const
{
return sensor_error_b_;
}
void setSensorErrorB(double val)
{
sensor_error_b_ = val;
}
double getSensorErrorC() const
{
return sensor_error_c_;
}
void setSensorErrorC(double val)
{
sensor_error_c_ = val;
}
private:
/** The method to use to compute the planes */
int method_;
/** The size of the blocks to look at for a stable MSE */
int block_size_;
/** The minimum size of a cluster to be considered a plane */
int min_size_;
/** How far a point can be from a plane to belong to it (in meters) */
double threshold_;
/** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */
double sensor_error_a_, sensor_error_b_, sensor_error_c_;
};
/** Object that contains a frame data.
*/
struct CV_EXPORTS RgbdFrame
{
RgbdFrame();
RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
virtual ~RgbdFrame();
virtual void
release();
int ID;
Mat image;
Mat depth;
Mat mask;
Mat normals;
};
/** Object that contains a frame data that is possibly needed for the Odometry.
* It's used for the efficiency (to pass precomputed/cached data of the frame that participates
* in the Odometry processing several times).
*/
struct CV_EXPORTS OdometryFrame : public RgbdFrame
{
/** These constants are used to set a type of cache which has to be prepared depending on the frame role:
* srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required,
* some part of a cache may be common for both frame roles.
* @param CACHE_SRC The cache data for the srcFrame will be prepared.
* @param CACHE_DST The cache data for the dstFrame will be prepared.
* @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed.
*/
enum
{
CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST
};
OdometryFrame();
OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
virtual void
release();
void
releasePyramids();
std::vector<Mat> pyramidImage;
std::vector<Mat> pyramidDepth;
std::vector<Mat> pyramidMask;
std::vector<Mat> pyramidCloud;
std::vector<Mat> pyramid_dI_dx;
std::vector<Mat> pyramid_dI_dy;
std::vector<Mat> pyramidTexturedMask;
std::vector<Mat> pyramidNormals;
std::vector<Mat> pyramidNormalsMask;
};
/** Base class for computation of odometry.
*/
class CV_EXPORTS Odometry: public Algorithm
{
public:
/** A class of transformation*/
enum
{
ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4
};
static inline float
DEFAULT_MIN_DEPTH()
{
return 0.f; // in meters
}
static inline float
DEFAULT_MAX_DEPTH()
{
return 4.f; // in meters
}
static inline float
DEFAULT_MAX_DEPTH_DIFF()
{
return 0.07f; // in meters
}
static inline float
DEFAULT_MAX_POINTS_PART()
{
return 0.07f; // in [0, 1]
}
static inline float
DEFAULT_MAX_TRANSLATION()
{
return 0.15f; // in meters
}
static inline float
DEFAULT_MAX_ROTATION()
{
return 15; // in degrees
}
/** Method to compute a transformation from the source frame to the destination one.
* Some odometry algorithms do not used some data of frames (eg. ICP does not use images).
* In such case corresponding arguments can be set as empty Mat.
* The method returns true if all internal computions were possible (e.g. there were enough correspondences,
* system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided
* by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation).
* @param srcImage Image data of the source frame (CV_8UC1)
* @param srcDepth Depth data of the source frame (CV_32FC1, in meters)
* @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1)
* @param dstImage Image data of the destination frame (CV_8UC1)
* @param dstDepth Depth data of the destination frame (CV_32FC1, in meters)
* @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1)
* @param Rt Resulting transformation from the source frame to the destination one (rigid body motion):
dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is
homogeneous point in the source frame,
Rt is 4x4 matrix of CV_64FC1 type.
* @param initRt Initial transformation from the source frame to the destination one (optional)
*/
bool
compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth,
const Mat& dstMask, Mat& Rt, const Mat& initRt = Mat()) const;
/** One more method to compute a transformation from the source frame to the destination one.
* It is designed to save on computing the frame data (image pyramids, normals, etc.).
*/
bool
compute(Ptr<OdometryFrame>& srcFrame, Ptr<OdometryFrame>& dstFrame, Mat& Rt, const Mat& initRt = Mat()) const;
/** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data
* does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution
* of the prepared frame.
* @param frame The odometry which will process the frame.
* @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL.
*/
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
static Ptr<Odometry> create(const String & odometryType);
/** @see setCameraMatrix */
virtual cv::Mat getCameraMatrix() const = 0;
/** @copybrief getCameraMatrix @see getCameraMatrix */
virtual void setCameraMatrix(const cv::Mat &val) = 0;
/** @see setTransformType */
virtual int getTransformType() const = 0;
/** @copybrief getTransformType @see getTransformType */
virtual void setTransformType(int val) = 0;
protected:
virtual void
checkParams() const = 0;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const = 0;
};
/** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images",
* F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
*/
class CV_EXPORTS RgbdOdometry: public Odometry
{
public:
RgbdOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used (in meters)
* @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters)
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff (in meters)
* @param iterCounts Count of iterations on each pyramid level.
* @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
* if they have gradient magnitude less than minGradientMagnitudes[level].
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param transformType Class of transformation
*/
RgbdOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
int transformType = RIGID_BODY_MOTION);
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
cv::Mat getCameraMatrix() const
{
return cameraMatrix;
}
void setCameraMatrix(const cv::Mat &val)
{
cameraMatrix = val;
}
double getMinDepth() const
{
return minDepth;
}
void setMinDepth(double val)
{
minDepth = val;
}
double getMaxDepth() const
{
return maxDepth;
}
void setMaxDepth(double val)
{
maxDepth = val;
}
double getMaxDepthDiff() const
{
return maxDepthDiff;
}
void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
cv::Mat getIterationCounts() const
{
return iterCounts;
}
void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
cv::Mat getMinGradientMagnitudes() const
{
return minGradientMagnitudes;
}
void setMinGradientMagnitudes(const cv::Mat &val)
{
minGradientMagnitudes = val;
}
double getMaxPointsPart() const
{
return maxPointsPart;
}
void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
int getTransformType() const
{
return transformType;
}
void setTransformType(int val)
{
transformType = val;
}
double getMaxTranslation() const
{
return maxTranslation;
}
void setMaxTranslation(double val)
{
maxTranslation = val;
}
double getMaxRotation() const
{
return maxRotation;
}
void setMaxRotation(double val)
{
maxRotation = val;
}
protected:
virtual void
checkParams() const;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*vector<int>*/
Mat iterCounts;
/*vector<float>*/
Mat minGradientMagnitudes;
double maxPointsPart;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
};
/** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking",
* Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011.
*/
class ICPOdometry: public Odometry
{
public:
ICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used
* @param maxDepth Pixels with depth larger than maxDepth will not be used
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param iterCounts Count of iterations on each pyramid level.
* @param transformType Class of trasformation
*/
ICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(), int transformType = RIGID_BODY_MOTION);
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
cv::Mat getCameraMatrix() const
{
return cameraMatrix;
}
void setCameraMatrix(const cv::Mat &val)
{
cameraMatrix = val;
}
double getMinDepth() const
{
return minDepth;
}
void setMinDepth(double val)
{
minDepth = val;
}
double getMaxDepth() const
{
return maxDepth;
}
void setMaxDepth(double val)
{
maxDepth = val;
}
double getMaxDepthDiff() const
{
return maxDepthDiff;
}
void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
cv::Mat getIterationCounts() const
{
return iterCounts;
}
void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
double getMaxPointsPart() const
{
return maxPointsPart;
}
void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
int getTransformType() const
{
return transformType;
}
void setTransformType(int val)
{
transformType = val;
}
double getMaxTranslation() const
{
return maxTranslation;
}
void setMaxTranslation(double val)
{
maxTranslation = val;
}
double getMaxRotation() const
{
return maxRotation;
}
void setMaxRotation(double val)
{
maxRotation = val;
}
Ptr<RgbdNormals> getNormalsComputer() const
{
return normalsComputer;
}
protected:
virtual void
checkParams() const;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*float*/
double maxPointsPart;
/*vector<int>*/
Mat iterCounts;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
mutable Ptr<RgbdNormals> normalsComputer;
};
/** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions.
*/
class RgbdICPOdometry: public Odometry
{
public:
RgbdICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used
* @param maxDepth Pixels with depth larger than maxDepth will not be used
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param iterCounts Count of iterations on each pyramid level.
* @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
* if they have gradient magnitude less than minGradientMagnitudes[level].
* @param transformType Class of trasformation
*/
RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(),
int transformType = RIGID_BODY_MOTION);
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
cv::Mat getCameraMatrix() const
{
return cameraMatrix;
}
void setCameraMatrix(const cv::Mat &val)
{
cameraMatrix = val;
}
double getMinDepth() const
{
return minDepth;
}
void setMinDepth(double val)
{
minDepth = val;
}
double getMaxDepth() const
{
return maxDepth;
}
void setMaxDepth(double val)
{
maxDepth = val;
}
double getMaxDepthDiff() const
{
return maxDepthDiff;
}
void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
double getMaxPointsPart() const
{
return maxPointsPart;
}
void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
cv::Mat getIterationCounts() const
{
return iterCounts;
}
void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
cv::Mat getMinGradientMagnitudes() const
{
return minGradientMagnitudes;
}
void setMinGradientMagnitudes(const cv::Mat &val)
{
minGradientMagnitudes = val;
}
int getTransformType() const
{
return transformType;
}
void setTransformType(int val)
{
transformType = val;
}
double getMaxTranslation() const
{
return maxTranslation;
}
void setMaxTranslation(double val)
{
maxTranslation = val;
}
double getMaxRotation() const
{
return maxRotation;
}
void setMaxRotation(double val)
{
maxRotation = val;
}
Ptr<RgbdNormals> getNormalsComputer() const
{
return normalsComputer;
}
protected:
virtual void
checkParams() const;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*float*/
double maxPointsPart;
/*vector<int>*/
Mat iterCounts;
/*vector<float>*/
Mat minGradientMagnitudes;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
mutable Ptr<RgbdNormals> normalsComputer;
};
/** Warp the image: compute 3d points from the depth, transform them using given transformation,
* then project color point cloud to an image plane.
* This function can be used to visualize results of the Odometry algorithm.
* @param image The image (of CV_8UC1 or CV_8UC3 type)
* @param depth The depth (of type used in depthTo3d fuction)
* @param mask The mask of used pixels (of CV_8UC1), it can be empty
* @param Rt The transformation that will be applied to the 3d points computed from the depth
* @param cameraMatrix Camera matrix
* @param distCoeff Distortion coefficients
* @param warpedImage The warped image.
* @param warpedDepth The warped depth.
* @param warpedMask The warped mask.
*/
CV_EXPORTS
void
warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix,
const Mat& distCoeff, Mat& warpedImage, Mat* warpedDepth = 0, Mat* warpedMask = 0);
// TODO Depth interpolation
// Curvature
// Get rescaleDepth return dubles if asked for
//! @}
} /* namespace rgbd */
} /* namespace cv */
#include "opencv2/rgbd/linemod.hpp"
#endif /* __cplusplus */
#endif
/* End of file. */
|