/* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #ifndef __OPENCV_RGBD_HPP__ #define __OPENCV_RGBD_HPP__ #ifdef __cplusplus #include #include /** @defgroup rgbd RGB-Depth Processing */ namespace cv { namespace rgbd { //! @addtogroup rgbd //! @{ /** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is * a limit. For a float/double, we just check if it is a NaN * @param depth the depth to check for validity */ CV_EXPORTS inline bool isValidDepth(const float & depth) { return !cvIsNaN(depth); } CV_EXPORTS inline bool isValidDepth(const double & depth) { return !cvIsNaN(depth); } CV_EXPORTS inline bool isValidDepth(const short int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } CV_EXPORTS inline bool isValidDepth(const unsigned short int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } CV_EXPORTS inline bool isValidDepth(const int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } CV_EXPORTS inline bool isValidDepth(const unsigned int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } /** Object that can compute the normals in an image. * It is an object as it can cache data for speed efficiency * The implemented methods are either: * - FALS (the fastest) and SRI from * ``Fast and Accurate Computation of Surface Normals from Range Images`` * by H. Badino, D. Huber, Y. Park and T. Kanade * - the normals with bilateral filtering on a depth image from * ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects`` * by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit */ class CV_EXPORTS RgbdNormals: public Algorithm { public: enum RGBD_NORMALS_METHOD { RGBD_NORMALS_METHOD_FALS, RGBD_NORMALS_METHOD_LINEMOD, RGBD_NORMALS_METHOD_SRI }; RgbdNormals() : rows_(0), cols_(0), depth_(0), K_(Mat()), window_size_(0), method_(RGBD_NORMALS_METHOD_FALS), rgbd_normals_impl_(0) { } /** Constructor * @param rows the number of rows of the depth image normals will be computed on * @param cols the number of cols of the depth image normals will be computed on * @param depth the depth of the normals (only CV_32F or CV_64F) * @param K the calibration matrix to use * @param window_size the window size to compute the normals: can only be 1,3,5 or 7 * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS */ RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method = RGBD_NORMALS_METHOD_FALS); ~RgbdNormals(); /** Given a set of 3d points in a depth image, compute the normals at each point. * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S * @param normals a rows x cols x 3 matrix */ void operator()(InputArray points, OutputArray normals) const; /** Initializes some data that is cached for later computation * If that function is not called, it will be called the first time normals are computed */ void initialize() const; int getRows() const { return rows_; } void setRows(int val) { rows_ = val; } int getCols() const { return cols_; } void setCols(int val) { cols_ = val; } int getWindowSize() const { return window_size_; } void setWindowSize(int val) { window_size_ = val; } int getDepth() const { return depth_; } void setDepth(int val) { depth_ = val; } cv::Mat getK() const { return K_; } void setK(const cv::Mat &val) { K_ = val; } int getMethod() const { return method_; } void setMethod(int val) { method_ = val; } protected: void initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const; int rows_, cols_, depth_; Mat K_; int window_size_; int method_; mutable void* rgbd_normals_impl_; }; /** Object that can clean a noisy depth image */ class CV_EXPORTS DepthCleaner: public Algorithm { public: /** NIL method is from * ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking`` * by C. Nguyen, S. Izadi, D. Lovel */ enum DEPTH_CLEANER_METHOD { DEPTH_CLEANER_NIL }; DepthCleaner() : depth_(0), window_size_(0), method_(DEPTH_CLEANER_NIL), depth_cleaner_impl_(0) { } /** Constructor * @param depth the depth of the normals (only CV_32F or CV_64F) * @param window_size the window size to compute the normals: can only be 1,3,5 or 7 * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS */ DepthCleaner(int depth, int window_size = 5, int method = DEPTH_CLEANER_NIL); ~DepthCleaner(); /** Given a set of 3d points in a depth image, compute the normals at each point. * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S * @param depth a rows x cols matrix of the cleaned up depth */ void operator()(InputArray points, OutputArray depth) const; /** Initializes some data that is cached for later computation * If that function is not called, it will be called the first time normals are computed */ void initialize() const; int getWindowSize() const { return window_size_; } void setWindowSize(int val) { window_size_ = val; } int getDepth() const { return depth_; } void setDepth(int val) { depth_ = val; } int getMethod() const { return method_; } void setMethod(int val) { method_ = val; } protected: void initialize_cleaner_impl() const; int depth_; int window_size_; int method_; mutable void* depth_cleaner_impl_; }; /** Registers depth data to an external camera * Registration is performed by creating a depth cloud, transforming the cloud by * the rigid body transformation between the cameras, and then projecting the * transformed points into the RGB camera. * * uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir * * Currently does not check for negative depth values. * * @param unregisteredCameraMatrix the camera matrix of the depth camera * @param registeredCameraMatrix the camera matrix of the external camera * @param registeredDistCoeffs the distortion coefficients of the external camera * @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame. * @param unregisteredDepth the input depth data * @param outputImagePlaneSize the image plane dimensions of the external camera (width, height) * @param registeredDepth the result of transforming the depth into the external camera * @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional) */ CV_EXPORTS void registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs, InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize, OutputArray registeredDepth, bool depthDilation=false); /** * @param depth the depth image * @param in_K * @param in_points the list of xy coordinates * @param points3d the resulting 3d points */ CV_EXPORTS void depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d); /** Converts a depth image to an organized set of 3d points. * The coordinate system is x pointing left, y down and z away from the camera * @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters * (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters) * @param K The calibration matrix * @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the * depth of `K` if `depth` is of depth CV_U * @param mask the mask of the points to consider (can be empty) */ CV_EXPORTS void depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray()); /** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided * by 1000 to get a depth in meters, and the values 0 are converted to std::numeric_limits::quiet_NaN() * Otherwise, the image is simply converted to floats * @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters * (as done with the Microsoft Kinect), it is assumed in meters) * @param depth the desired output depth (floats or double) * @param out The rescaled float depth image */ CV_EXPORTS void rescaleDepth(InputArray in, int depth, OutputArray out); /** Object that can compute planes in an image */ class CV_EXPORTS RgbdPlane: public Algorithm { public: enum RGBD_PLANE_METHOD { RGBD_PLANE_METHOD_DEFAULT }; RgbdPlane(RGBD_PLANE_METHOD method = RGBD_PLANE_METHOD_DEFAULT) : method_(method), block_size_(40), min_size_(block_size_*block_size_), threshold_(0.01), sensor_error_a_(0), sensor_error_b_(0), sensor_error_c_(0) { } /** Find The planes in a depth image * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels * @param normals the normals for every point in the depth image * @param mask An image where each pixel is labeled with the plane it belongs to * and 255 if it does not belong to any plane * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1 * and c < 0 (so that the normal points towards the camera) */ void operator()(InputArray points3d, InputArray normals, OutputArray mask, OutputArray plane_coefficients); /** Find The planes in a depth image but without doing a normal check, which is faster but less accurate * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels * @param mask An image where each pixel is labeled with the plane it belongs to * and 255 if it does not belong to any plane * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0 */ void operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients); int getBlockSize() const { return block_size_; } void setBlockSize(int val) { block_size_ = val; } int getMinSize() const { return min_size_; } void setMinSize(int val) { min_size_ = val; } int getMethod() const { return method_; } void setMethod(int val) { method_ = val; } double getThreshold() const { return threshold_; } void setThreshold(double val) { threshold_ = val; } double getSensorErrorA() const { return sensor_error_a_; } void setSensorErrorA(double val) { sensor_error_a_ = val; } double getSensorErrorB() const { return sensor_error_b_; } void setSensorErrorB(double val) { sensor_error_b_ = val; } double getSensorErrorC() const { return sensor_error_c_; } void setSensorErrorC(double val) { sensor_error_c_ = val; } private: /** The method to use to compute the planes */ int method_; /** The size of the blocks to look at for a stable MSE */ int block_size_; /** The minimum size of a cluster to be considered a plane */ int min_size_; /** How far a point can be from a plane to belong to it (in meters) */ double threshold_; /** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */ double sensor_error_a_, sensor_error_b_, sensor_error_c_; }; /** Object that contains a frame data. */ struct CV_EXPORTS RgbdFrame { RgbdFrame(); RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); virtual ~RgbdFrame(); virtual void release(); int ID; Mat image; Mat depth; Mat mask; Mat normals; }; /** Object that contains a frame data that is possibly needed for the Odometry. * It's used for the efficiency (to pass precomputed/cached data of the frame that participates * in the Odometry processing several times). */ struct CV_EXPORTS OdometryFrame : public RgbdFrame { /** These constants are used to set a type of cache which has to be prepared depending on the frame role: * srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required, * some part of a cache may be common for both frame roles. * @param CACHE_SRC The cache data for the srcFrame will be prepared. * @param CACHE_DST The cache data for the dstFrame will be prepared. * @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed. */ enum { CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST }; OdometryFrame(); OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); virtual void release(); void releasePyramids(); std::vector pyramidImage; std::vector pyramidDepth; std::vector pyramidMask; std::vector pyramidCloud; std::vector pyramid_dI_dx; std::vector pyramid_dI_dy; std::vector pyramidTexturedMask; std::vector pyramidNormals; std::vector pyramidNormalsMask; }; /** Base class for computation of odometry. */ class CV_EXPORTS Odometry: public Algorithm { public: /** A class of transformation*/ enum { ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4 }; static inline float DEFAULT_MIN_DEPTH() { return 0.f; // in meters } static inline float DEFAULT_MAX_DEPTH() { return 4.f; // in meters } static inline float DEFAULT_MAX_DEPTH_DIFF() { return 0.07f; // in meters } static inline float DEFAULT_MAX_POINTS_PART() { return 0.07f; // in [0, 1] } static inline float DEFAULT_MAX_TRANSLATION() { return 0.15f; // in meters } static inline float DEFAULT_MAX_ROTATION() { return 15; // in degrees } /** Method to compute a transformation from the source frame to the destination one. * Some odometry algorithms do not used some data of frames (eg. ICP does not use images). * In such case corresponding arguments can be set as empty Mat. * The method returns true if all internal computions were possible (e.g. there were enough correspondences, * system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided * by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation). * @param srcImage Image data of the source frame (CV_8UC1) * @param srcDepth Depth data of the source frame (CV_32FC1, in meters) * @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1) * @param dstImage Image data of the destination frame (CV_8UC1) * @param dstDepth Depth data of the destination frame (CV_32FC1, in meters) * @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1) * @param Rt Resulting transformation from the source frame to the destination one (rigid body motion): dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is homogeneous point in the source frame, Rt is 4x4 matrix of CV_64FC1 type. * @param initRt Initial transformation from the source frame to the destination one (optional) */ bool compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth, const Mat& dstMask, Mat& Rt, const Mat& initRt = Mat()) const; /** One more method to compute a transformation from the source frame to the destination one. * It is designed to save on computing the frame data (image pyramids, normals, etc.). */ bool compute(Ptr& srcFrame, Ptr& dstFrame, Mat& Rt, const Mat& initRt = Mat()) const; /** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data * does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution * of the prepared frame. * @param frame The odometry which will process the frame. * @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL. */ virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; static Ptr create(const String & odometryType); /** @see setCameraMatrix */ virtual cv::Mat getCameraMatrix() const = 0; /** @copybrief getCameraMatrix @see getCameraMatrix */ virtual void setCameraMatrix(const cv::Mat &val) = 0; /** @see setTransformType */ virtual int getTransformType() const = 0; /** @copybrief getTransformType @see getTransformType */ virtual void setTransformType(int val) = 0; protected: virtual void checkParams() const = 0; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, const Mat& initRt) const = 0; }; /** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images", * F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011. */ class CV_EXPORTS RgbdOdometry: public Odometry { public: RgbdOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param minDepth Pixels with depth less than minDepth will not be used (in meters) * @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters) * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff (in meters) * @param iterCounts Count of iterations on each pyramid level. * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out * if they have gradient magnitude less than minGradientMagnitudes[level]. * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart * @param transformType Class of transformation */ RgbdOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(), float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), const std::vector& iterCounts = std::vector(), const std::vector& minGradientMagnitudes = std::vector(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(), int transformType = RIGID_BODY_MOTION); virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; cv::Mat getCameraMatrix() const { return cameraMatrix; } void setCameraMatrix(const cv::Mat &val) { cameraMatrix = val; } double getMinDepth() const { return minDepth; } void setMinDepth(double val) { minDepth = val; } double getMaxDepth() const { return maxDepth; } void setMaxDepth(double val) { maxDepth = val; } double getMaxDepthDiff() const { return maxDepthDiff; } void setMaxDepthDiff(double val) { maxDepthDiff = val; } cv::Mat getIterationCounts() const { return iterCounts; } void setIterationCounts(const cv::Mat &val) { iterCounts = val; } cv::Mat getMinGradientMagnitudes() const { return minGradientMagnitudes; } void setMinGradientMagnitudes(const cv::Mat &val) { minGradientMagnitudes = val; } double getMaxPointsPart() const { return maxPointsPart; } void setMaxPointsPart(double val) { maxPointsPart = val; } int getTransformType() const { return transformType; } void setTransformType(int val) { transformType = val; } double getMaxTranslation() const { return maxTranslation; } void setMaxTranslation(double val) { maxTranslation = val; } double getMaxRotation() const { return maxRotation; } void setMaxRotation(double val) { maxRotation = val; } protected: virtual void checkParams() const; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, const Mat& initRt) const; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. /*float*/ double minDepth, maxDepth, maxDepthDiff; /*vector*/ Mat iterCounts; /*vector*/ Mat minGradientMagnitudes; double maxPointsPart; Mat cameraMatrix; int transformType; double maxTranslation, maxRotation; }; /** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking", * Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011. */ class ICPOdometry: public Odometry { public: ICPOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param minDepth Pixels with depth less than minDepth will not be used * @param maxDepth Pixels with depth larger than maxDepth will not be used * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart * @param iterCounts Count of iterations on each pyramid level. * @param transformType Class of trasformation */ ICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(), float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(), const std::vector& iterCounts = std::vector(), int transformType = RIGID_BODY_MOTION); virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; cv::Mat getCameraMatrix() const { return cameraMatrix; } void setCameraMatrix(const cv::Mat &val) { cameraMatrix = val; } double getMinDepth() const { return minDepth; } void setMinDepth(double val) { minDepth = val; } double getMaxDepth() const { return maxDepth; } void setMaxDepth(double val) { maxDepth = val; } double getMaxDepthDiff() const { return maxDepthDiff; } void setMaxDepthDiff(double val) { maxDepthDiff = val; } cv::Mat getIterationCounts() const { return iterCounts; } void setIterationCounts(const cv::Mat &val) { iterCounts = val; } double getMaxPointsPart() const { return maxPointsPart; } void setMaxPointsPart(double val) { maxPointsPart = val; } int getTransformType() const { return transformType; } void setTransformType(int val) { transformType = val; } double getMaxTranslation() const { return maxTranslation; } void setMaxTranslation(double val) { maxTranslation = val; } double getMaxRotation() const { return maxRotation; } void setMaxRotation(double val) { maxRotation = val; } Ptr getNormalsComputer() const { return normalsComputer; } protected: virtual void checkParams() const; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, const Mat& initRt) const; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. /*float*/ double minDepth, maxDepth, maxDepthDiff; /*float*/ double maxPointsPart; /*vector*/ Mat iterCounts; Mat cameraMatrix; int transformType; double maxTranslation, maxRotation; mutable Ptr normalsComputer; }; /** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions. */ class RgbdICPOdometry: public Odometry { public: RgbdICPOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param minDepth Pixels with depth less than minDepth will not be used * @param maxDepth Pixels with depth larger than maxDepth will not be used * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart * @param iterCounts Count of iterations on each pyramid level. * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out * if they have gradient magnitude less than minGradientMagnitudes[level]. * @param transformType Class of trasformation */ RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(), float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(), const std::vector& iterCounts = std::vector(), const std::vector& minGradientMagnitudes = std::vector(), int transformType = RIGID_BODY_MOTION); virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; cv::Mat getCameraMatrix() const { return cameraMatrix; } void setCameraMatrix(const cv::Mat &val) { cameraMatrix = val; } double getMinDepth() const { return minDepth; } void setMinDepth(double val) { minDepth = val; } double getMaxDepth() const { return maxDepth; } void setMaxDepth(double val) { maxDepth = val; } double getMaxDepthDiff() const { return maxDepthDiff; } void setMaxDepthDiff(double val) { maxDepthDiff = val; } double getMaxPointsPart() const { return maxPointsPart; } void setMaxPointsPart(double val) { maxPointsPart = val; } cv::Mat getIterationCounts() const { return iterCounts; } void setIterationCounts(const cv::Mat &val) { iterCounts = val; } cv::Mat getMinGradientMagnitudes() const { return minGradientMagnitudes; } void setMinGradientMagnitudes(const cv::Mat &val) { minGradientMagnitudes = val; } int getTransformType() const { return transformType; } void setTransformType(int val) { transformType = val; } double getMaxTranslation() const { return maxTranslation; } void setMaxTranslation(double val) { maxTranslation = val; } double getMaxRotation() const { return maxRotation; } void setMaxRotation(double val) { maxRotation = val; } Ptr getNormalsComputer() const { return normalsComputer; } protected: virtual void checkParams() const; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, const Mat& initRt) const; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. /*float*/ double minDepth, maxDepth, maxDepthDiff; /*float*/ double maxPointsPart; /*vector*/ Mat iterCounts; /*vector*/ Mat minGradientMagnitudes; Mat cameraMatrix; int transformType; double maxTranslation, maxRotation; mutable Ptr normalsComputer; }; /** Warp the image: compute 3d points from the depth, transform them using given transformation, * then project color point cloud to an image plane. * This function can be used to visualize results of the Odometry algorithm. * @param image The image (of CV_8UC1 or CV_8UC3 type) * @param depth The depth (of type used in depthTo3d fuction) * @param mask The mask of used pixels (of CV_8UC1), it can be empty * @param Rt The transformation that will be applied to the 3d points computed from the depth * @param cameraMatrix Camera matrix * @param distCoeff Distortion coefficients * @param warpedImage The warped image. * @param warpedDepth The warped depth. * @param warpedMask The warped mask. */ CV_EXPORTS void warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff, Mat& warpedImage, Mat* warpedDepth = 0, Mat* warpedMask = 0); // TODO Depth interpolation // Curvature // Get rescaleDepth return dubles if asked for //! @} } /* namespace rgbd */ } /* namespace cv */ #include "opencv2/rgbd/linemod.hpp" #endif /* __cplusplus */ #endif /* End of file. */