1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
/*
* imgaborfilt
*
* imgaborfilt in scilab
*
*/
// Created by Samiran Roy, mail: samiranroy@cse.iitb.ac.in
// An implementation of imgaborfilt in scilab
// Usage:
// imgaborfilt(I,wavelength,orientation) : Perform gabor filtering on a grayscale image with given wavelength and orientation
// imboxfilt(I,method)
// method : 'upright' (default)
// method : 'rotated' The area sums are calulated over a rectangle, which is
// rotated 45 degrees
// Known Changes from Matlab:
/*
* 1) None, as of now
*/
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C" {
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include "sciprint.h"
#include "../common.h"
int opencv_imgaborfilt(char *fname, unsigned long fname_len) {
SciErr sciErr;
int intErr = 0;
int iRows = 0, iCols = 0;
int *piAddr = NULL;
int *piAddr1 = NULL;
int *piAddr2 = NULL;
int *piAddr3 = NULL;
int error;
double wavelength;
double orientation;
int borderType = BORDER_REPLICATE;
// Parameters for convolution - Leave these alone
/* **********************************************************************************
*/
Point anchor;
double delta;
int ddepth;
anchor = Point(-1, -1); // The center is unchanged
delta = 0; // No value is added to output
ddepth = -1; // The dimentions of input and output images are the same
/* **********************************************************************************
*/
// Get the number of input arguments
int inputarg = *getNbInputArgument(pvApiCtx);
// String holding the second argument
int iRet = 0;
char *pstData = NULL;
// Checking input argument
CheckInputArgument(pvApiCtx, 3, 3);
CheckOutputArgument(pvApiCtx, 1, 1);
// Get input image
Mat image;
retrieveImage(image, 1);
if (image.channels() > 1) {
sciprint("The image must be grayscale.");
return 0;
}
// Getting the wavelength
sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2);
if (sciErr.iErr) {
printError(&sciErr, 0);
return 0;
}
intErr = getScalarDouble(pvApiCtx, piAddr2, &wavelength);
if (sciErr.iErr) {
printError(&sciErr, 0);
return intErr;
}
if (wavelength < 2) {
sciprint("Wavelength must be >=2");
return 0;
}
// Getting the orientation
sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3);
if (sciErr.iErr) {
printError(&sciErr, 0);
return 0;
}
intErr = getScalarDouble(pvApiCtx, piAddr3, &orientation);
if (sciErr.iErr) {
printError(&sciErr, 0);
return intErr;
}
if ((orientation < 0) || (orientation > 360)) {
sciprint("Orientation must be in the range [0,360]");
return 0;
}
double sigma = (1 / CV_PI) * sqrt(log(2) / 2) * 3 *
wavelength; // calculating sigma following matlab convention
orientation = (orientation / 360) * 2 * CV_PI; // Converting degree to radian
int K_size =
33 +
16 * (wavelength - 2); // size of kernel following matlab convention
Mat kernel = getGaborKernel(cv::Size(K_size, K_size), sigma, orientation,
wavelength, 0.5, 0);
Mat floatimage;
image.convertTo(floatimage, CV_32F); // Converting image to float type
Mat dst;
Mat new_image;
filter2D(floatimage, new_image, CV_32F, kernel); // Performing convolution
int temp = nbInputArgument(pvApiCtx) + 1;
string tempstring = type2str(new_image.type());
char *checker;
checker = (char *)malloc(tempstring.size() + 1);
memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
returnImage(checker, new_image, 1);
free(checker);
// Assigning the list as the Output Variable
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
// Returning the Output Variables as arguments to the Scilab environment
ReturnArguments(pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|