/* * imgaborfilt * * imgaborfilt in scilab * */ // Created by Samiran Roy, mail: samiranroy@cse.iitb.ac.in // An implementation of imgaborfilt in scilab // Usage: // imgaborfilt(I,wavelength,orientation) : Perform gabor filtering on a grayscale image with given wavelength and orientation // imboxfilt(I,method) // method : 'upright' (default) // method : 'rotated' The area sums are calulated over a rectangle, which is // rotated 45 degrees // Known Changes from Matlab: /* * 1) None, as of now */ #include #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/opencv.hpp" #include using namespace cv; using namespace std; extern "C" { #include "api_scilab.h" #include "Scierror.h" #include "BOOL.h" #include #include "sciprint.h" #include "../common.h" int opencv_imgaborfilt(char *fname, unsigned long fname_len) { SciErr sciErr; int intErr = 0; int iRows = 0, iCols = 0; int *piAddr = NULL; int *piAddr1 = NULL; int *piAddr2 = NULL; int *piAddr3 = NULL; int error; double wavelength; double orientation; int borderType = BORDER_REPLICATE; // Parameters for convolution - Leave these alone /* ********************************************************************************** */ Point anchor; double delta; int ddepth; anchor = Point(-1, -1); // The center is unchanged delta = 0; // No value is added to output ddepth = -1; // The dimentions of input and output images are the same /* ********************************************************************************** */ // Get the number of input arguments int inputarg = *getNbInputArgument(pvApiCtx); // String holding the second argument int iRet = 0; char *pstData = NULL; // Checking input argument CheckInputArgument(pvApiCtx, 3, 3); CheckOutputArgument(pvApiCtx, 1, 1); // Get input image Mat image; retrieveImage(image, 1); if (image.channels() > 1) { sciprint("The image must be grayscale."); return 0; } // Getting the wavelength sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr2, &wavelength); if (sciErr.iErr) { printError(&sciErr, 0); return intErr; } if (wavelength < 2) { sciprint("Wavelength must be >=2"); return 0; } // Getting the orientation sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr3, &orientation); if (sciErr.iErr) { printError(&sciErr, 0); return intErr; } if ((orientation < 0) || (orientation > 360)) { sciprint("Orientation must be in the range [0,360]"); return 0; } double sigma = (1 / CV_PI) * sqrt(log(2) / 2) * 3 * wavelength; // calculating sigma following matlab convention orientation = (orientation / 360) * 2 * CV_PI; // Converting degree to radian int K_size = 33 + 16 * (wavelength - 2); // size of kernel following matlab convention Mat kernel = getGaborKernel(cv::Size(K_size, K_size), sigma, orientation, wavelength, 0.5, 0); Mat floatimage; image.convertTo(floatimage, CV_32F); // Converting image to float type Mat dst; Mat new_image; filter2D(floatimage, new_image, CV_32F, kernel); // Performing convolution int temp = nbInputArgument(pvApiCtx) + 1; string tempstring = type2str(new_image.type()); char *checker; checker = (char *)malloc(tempstring.size() + 1); memcpy(checker, tempstring.c_str(), tempstring.size() + 1); returnImage(checker, new_image, 1); free(checker); // Assigning the list as the Output Variable AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1; // Returning the Output Variables as arguments to the Scilab environment ReturnArguments(pvApiCtx); return 0; } /* ==================================================================== */ }