summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/flann/lsh_table.h
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/flann/lsh_table.h
downloadFOSSEE_Image_Processing_Toolbox-master.tar.gz
FOSSEE_Image_Processing_Toolbox-master.tar.bz2
FOSSEE_Image_Processing_Toolbox-master.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/lsh_table.h')
-rw-r--r--thirdparty1/linux/include/opencv2/flann/lsh_table.h492
1 files changed, 492 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/lsh_table.h b/thirdparty1/linux/include/opencv2/flann/lsh_table.h
new file mode 100644
index 0000000..8ef2bd3
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/flann/lsh_table.h
@@ -0,0 +1,492 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+/***********************************************************************
+ * Author: Vincent Rabaud
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_LSH_TABLE_H_
+#define OPENCV_FLANN_LSH_TABLE_H_
+
+#include <algorithm>
+#include <iostream>
+#include <iomanip>
+#include <limits.h>
+// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
+#ifdef __GXX_EXPERIMENTAL_CXX0X__
+# define USE_UNORDERED_MAP 1
+#else
+# define USE_UNORDERED_MAP 0
+#endif
+#if USE_UNORDERED_MAP
+#include <unordered_map>
+#else
+#include <map>
+#endif
+#include <math.h>
+#include <stddef.h>
+
+#include "dynamic_bitset.h"
+#include "matrix.h"
+
+namespace cvflann
+{
+
+namespace lsh
+{
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** What is stored in an LSH bucket
+ */
+typedef uint32_t FeatureIndex;
+/** The id from which we can get a bucket back in an LSH table
+ */
+typedef unsigned int BucketKey;
+
+/** A bucket in an LSH table
+ */
+typedef std::vector<FeatureIndex> Bucket;
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** POD for stats about an LSH table
+ */
+struct LshStats
+{
+ std::vector<unsigned int> bucket_sizes_;
+ size_t n_buckets_;
+ size_t bucket_size_mean_;
+ size_t bucket_size_median_;
+ size_t bucket_size_min_;
+ size_t bucket_size_max_;
+ size_t bucket_size_std_dev;
+ /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
+ */
+ std::vector<std::vector<unsigned int> > size_histogram_;
+};
+
+/** Overload the << operator for LshStats
+ * @param out the streams
+ * @param stats the stats to display
+ * @return the streams
+ */
+inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
+{
+ int w = 20;
+ out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
+ << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
+ << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
+ << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
+ << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
+ << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
+ << std::setiosflags(std::ios::left) << stats.bucket_size_max_;
+
+ // Display the histogram
+ out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
+ << std::setiosflags(std::ios::left);
+ for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
+ stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", ";
+
+ return out;
+}
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Lsh hash table. As its key is a sub-feature, and as usually
+ * the size of it is pretty small, we keep it as a continuous memory array.
+ * The value is an index in the corpus of features (we keep it as an unsigned
+ * int for pure memory reasons, it could be a size_t)
+ */
+template<typename ElementType>
+class LshTable
+{
+public:
+ /** A container of all the feature indices. Optimized for space
+ */
+#if USE_UNORDERED_MAP
+ typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
+#else
+ typedef std::map<BucketKey, Bucket> BucketsSpace;
+#endif
+
+ /** A container of all the feature indices. Optimized for speed
+ */
+ typedef std::vector<Bucket> BucketsSpeed;
+
+ /** Default constructor
+ */
+ LshTable()
+ {
+ }
+
+ /** Default constructor
+ * Create the mask and allocate the memory
+ * @param feature_size is the size of the feature (considered as a ElementType[])
+ * @param key_size is the number of bits that are turned on in the feature
+ */
+ LshTable(unsigned int feature_size, unsigned int key_size)
+ {
+ (void)feature_size;
+ (void)key_size;
+ std::cerr << "LSH is not implemented for that type" << std::endl;
+ assert(0);
+ }
+
+ /** Add a feature to the table
+ * @param value the value to store for that feature
+ * @param feature the feature itself
+ */
+ void add(unsigned int value, const ElementType* feature)
+ {
+ // Add the value to the corresponding bucket
+ BucketKey key = (lsh::BucketKey)getKey(feature);
+
+ switch (speed_level_) {
+ case kArray:
+ // That means we get the buckets from an array
+ buckets_speed_[key].push_back(value);
+ break;
+ case kBitsetHash:
+ // That means we can check the bitset for the presence of a key
+ key_bitset_.set(key);
+ buckets_space_[key].push_back(value);
+ break;
+ case kHash:
+ {
+ // That means we have to check for the hash table for the presence of a key
+ buckets_space_[key].push_back(value);
+ break;
+ }
+ }
+ }
+
+ /** Add a set of features to the table
+ * @param dataset the values to store
+ */
+ void add(Matrix<ElementType> dataset)
+ {
+#if USE_UNORDERED_MAP
+ buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
+#endif
+ // Add the features to the table
+ for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
+ // Now that the table is full, optimize it for speed/space
+ optimize();
+ }
+
+ /** Get a bucket given the key
+ * @param key
+ * @return
+ */
+ inline const Bucket* getBucketFromKey(BucketKey key) const
+ {
+ // Generate other buckets
+ switch (speed_level_) {
+ case kArray:
+ // That means we get the buckets from an array
+ return &buckets_speed_[key];
+ break;
+ case kBitsetHash:
+ // That means we can check the bitset for the presence of a key
+ if (key_bitset_.test(key)) return &buckets_space_.find(key)->second;
+ else return 0;
+ break;
+ case kHash:
+ {
+ // That means we have to check for the hash table for the presence of a key
+ BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
+ bucket_it = buckets_space_.find(key);
+ // Stop here if that bucket does not exist
+ if (bucket_it == bucket_end) return 0;
+ else return &bucket_it->second;
+ break;
+ }
+ }
+ return 0;
+ }
+
+ /** Compute the sub-signature of a feature
+ */
+ size_t getKey(const ElementType* /*feature*/) const
+ {
+ std::cerr << "LSH is not implemented for that type" << std::endl;
+ assert(0);
+ return 1;
+ }
+
+ /** Get statistics about the table
+ * @return
+ */
+ LshStats getStats() const;
+
+private:
+ /** defines the speed fo the implementation
+ * kArray uses a vector for storing data
+ * kBitsetHash uses a hash map but checks for the validity of a key with a bitset
+ * kHash uses a hash map only
+ */
+ enum SpeedLevel
+ {
+ kArray, kBitsetHash, kHash
+ };
+
+ /** Initialize some variables
+ */
+ void initialize(size_t key_size)
+ {
+ const size_t key_size_lower_bound = 1;
+ //a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t
+ const size_t key_size_upper_bound = (std::min)(sizeof(BucketKey) * CHAR_BIT + 1, sizeof(size_t) * CHAR_BIT);
+ if (key_size < key_size_lower_bound || key_size >= key_size_upper_bound)
+ {
+ CV_Error(cv::Error::StsBadArg, cv::format("Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d.", (int)key_size, (int)key_size_lower_bound, (int)key_size_upper_bound));
+ }
+
+ speed_level_ = kHash;
+ key_size_ = (unsigned)key_size;
+ }
+
+ /** Optimize the table for speed/space
+ */
+ void optimize()
+ {
+ // If we are already using the fast storage, no need to do anything
+ if (speed_level_ == kArray) return;
+
+ // Use an array if it will be more than half full
+ if (buckets_space_.size() > ((size_t(1) << key_size_) / 2)) {
+ speed_level_ = kArray;
+ // Fill the array version of it
+ buckets_speed_.resize(size_t(1) << key_size_);
+ for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;
+
+ // Empty the hash table
+ buckets_space_.clear();
+ return;
+ }
+
+ // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
+ // for the vector) or less than 512MB (key_size_ <= 30)
+ if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
+ >= (size_t(1) << key_size_)) || (key_size_ <= 32)) {
+ speed_level_ = kBitsetHash;
+ key_bitset_.resize(size_t(1) << key_size_);
+ key_bitset_.reset();
+ // Try with the BucketsSpace
+ for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
+ }
+ else {
+ speed_level_ = kHash;
+ key_bitset_.clear();
+ }
+ }
+
+ /** The vector of all the buckets if they are held for speed
+ */
+ BucketsSpeed buckets_speed_;
+
+ /** The hash table of all the buckets in case we cannot use the speed version
+ */
+ BucketsSpace buckets_space_;
+
+ /** What is used to store the data */
+ SpeedLevel speed_level_;
+
+ /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
+ * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
+ */
+ DynamicBitset key_bitset_;
+
+ /** The size of the sub-signature in bits
+ */
+ unsigned int key_size_;
+
+ // Members only used for the unsigned char specialization
+ /** The mask to apply to a feature to get the hash key
+ * Only used in the unsigned char case
+ */
+ std::vector<size_t> mask_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// Specialization for unsigned char
+
+template<>
+inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
+{
+ initialize(subsignature_size);
+ // Allocate the mask
+ mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);
+
+ // A bit brutal but fast to code
+ std::vector<size_t> indices(feature_size * CHAR_BIT);
+ for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
+ std::random_shuffle(indices.begin(), indices.end());
+
+ // Generate a random set of order of subsignature_size_ bits
+ for (unsigned int i = 0; i < key_size_; ++i) {
+ size_t index = indices[i];
+
+ // Set that bit in the mask
+ size_t divisor = CHAR_BIT * sizeof(size_t);
+ size_t idx = index / divisor; //pick the right size_t index
+ mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
+ }
+
+ // Set to 1 if you want to display the mask for debug
+#if 0
+ {
+ size_t bcount = 0;
+ BOOST_FOREACH(size_t mask_block, mask_){
+ out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
+ << std::endl;
+ bcount += __builtin_popcountll(mask_block);
+ }
+ out << "bit count : " << std::dec << bcount << std::endl;
+ out << "mask size : " << mask_.size() << std::endl;
+ return out;
+ }
+#endif
+}
+
+/** Return the Subsignature of a feature
+ * @param feature the feature to analyze
+ */
+template<>
+inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
+{
+ // no need to check if T is dividable by sizeof(size_t) like in the Hamming
+ // distance computation as we have a mask
+ const size_t* feature_block_ptr = reinterpret_cast<const size_t*> ((const void*)feature);
+
+ // Figure out the subsignature of the feature
+ // Given the feature ABCDEF, and the mask 001011, the output will be
+ // 000CEF
+ size_t subsignature = 0;
+ size_t bit_index = 1;
+
+ for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) {
+ // get the mask and signature blocks
+ size_t feature_block = *feature_block_ptr;
+ size_t mask_block = *pmask_block;
+ while (mask_block) {
+ // Get the lowest set bit in the mask block
+ size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
+ // Add it to the current subsignature if necessary
+ subsignature += (feature_block & lowest_bit) ? bit_index : 0;
+ // Reset the bit in the mask block
+ mask_block ^= lowest_bit;
+ // increment the bit index for the subsignature
+ bit_index <<= 1;
+ }
+ // Check the next feature block
+ ++feature_block_ptr;
+ }
+ return subsignature;
+}
+
+template<>
+inline LshStats LshTable<unsigned char>::getStats() const
+{
+ LshStats stats;
+ stats.bucket_size_mean_ = 0;
+ if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
+ stats.n_buckets_ = 0;
+ stats.bucket_size_median_ = 0;
+ stats.bucket_size_min_ = 0;
+ stats.bucket_size_max_ = 0;
+ return stats;
+ }
+
+ if (!buckets_speed_.empty()) {
+ for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
+ stats.bucket_sizes_.push_back((lsh::FeatureIndex)pbucket->size());
+ stats.bucket_size_mean_ += pbucket->size();
+ }
+ stats.bucket_size_mean_ /= buckets_speed_.size();
+ stats.n_buckets_ = buckets_speed_.size();
+ }
+ else {
+ for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
+ stats.bucket_sizes_.push_back((lsh::FeatureIndex)x->second.size());
+ stats.bucket_size_mean_ += x->second.size();
+ }
+ stats.bucket_size_mean_ /= buckets_space_.size();
+ stats.n_buckets_ = buckets_space_.size();
+ }
+
+ std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());
+
+ // BOOST_FOREACH(int size, stats.bucket_sizes_)
+ // std::cout << size << " ";
+ // std::cout << std::endl;
+ stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
+ stats.bucket_size_min_ = stats.bucket_sizes_.front();
+ stats.bucket_size_max_ = stats.bucket_sizes_.back();
+
+ // TODO compute mean and std
+ /*float mean, stddev;
+ stats.bucket_size_mean_ = mean;
+ stats.bucket_size_std_dev = stddev;*/
+
+ // Include a histogram of the buckets
+ unsigned int bin_start = 0;
+ unsigned int bin_end = 20;
+ bool is_new_bin = true;
+ for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
+ != end; )
+ if (*iterator < bin_end) {
+ if (is_new_bin) {
+ stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
+ stats.size_histogram_.back()[0] = bin_start;
+ stats.size_histogram_.back()[1] = bin_end - 1;
+ is_new_bin = false;
+ }
+ ++stats.size_histogram_.back()[2];
+ ++iterator;
+ }
+ else {
+ bin_start += 20;
+ bin_end += 20;
+ is_new_bin = true;
+ }
+
+ return stats;
+}
+
+// End the two namespaces
+}
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+#endif /* OPENCV_FLANN_LSH_TABLE_H_ */