summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp
downloadFOSSEE_Image_Processing_Toolbox-master.tar.gz
FOSSEE_Image_Processing_Toolbox-master.tar.bz2
FOSSEE_Image_Processing_Toolbox-master.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp288
1 files changed, 288 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp b/thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp
new file mode 100644
index 0000000..982bc20
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/tracking/onlineBoosting.hpp
@@ -0,0 +1,288 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+ //
+ // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ //
+ // By downloading, copying, installing or using the software you agree to this license.
+ // If you do not agree to this license, do not download, install,
+ // copy or use the software.
+ //
+ //
+ // License Agreement
+ // For Open Source Computer Vision Library
+ //
+ // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+ // Third party copyrights are property of their respective owners.
+ //
+ // Redistribution and use in source and binary forms, with or without modification,
+ // are permitted provided that the following conditions are met:
+ //
+ // * Redistribution's of source code must retain the above copyright notice,
+ // this list of conditions and the following disclaimer.
+ //
+ // * Redistribution's in binary form must reproduce the above copyright notice,
+ // this list of conditions and the following disclaimer in the documentation
+ // and/or other materials provided with the distribution.
+ //
+ // * The name of the copyright holders may not be used to endorse or promote products
+ // derived from this software without specific prior written permission.
+ //
+ // This software is provided by the copyright holders and contributors "as is" and
+ // any express or implied warranties, including, but not limited to, the implied
+ // warranties of merchantability and fitness for a particular purpose are disclaimed.
+ // In no event shall the Intel Corporation or contributors be liable for any direct,
+ // indirect, incidental, special, exemplary, or consequential damages
+ // (including, but not limited to, procurement of substitute goods or services;
+ // loss of use, data, or profits; or business interruption) however caused
+ // and on any theory of liability, whether in contract, strict liability,
+ // or tort (including negligence or otherwise) arising in any way out of
+ // the use of this software, even if advised of the possibility of such damage.
+ //
+ //M*/
+
+#ifndef __OPENCV_ONLINEBOOSTING_HPP__
+#define __OPENCV_ONLINEBOOSTING_HPP__
+
+#include "opencv2/core.hpp"
+
+namespace cv
+{
+
+//! @addtogroup tracking
+//! @{
+
+//TODO based on the original implementation
+//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
+
+class BaseClassifier;
+class WeakClassifierHaarFeature;
+class EstimatedGaussDistribution;
+class ClassifierThreshold;
+class Detector;
+
+class StrongClassifierDirectSelection
+{
+ public:
+
+ StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit =
+ 0 );
+ virtual ~StrongClassifierDirectSelection();
+
+ void initBaseClassifier();
+
+ bool update( const Mat& image, int target, float importance = 1.0 );
+ float eval( const Mat& response );
+ std::vector<int> getSelectedWeakClassifier();
+ float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx );
+ int getNumBaseClassifier();
+ Size getPatchSize() const;
+ Rect getROI() const;
+ bool getUseFeatureExchange() const;
+ int getReplacedClassifier() const;
+
+ void replaceWeakClassifier( int idx );
+ int getSwappedClassifier() const;
+ private:
+
+ //StrongClassifier
+ int numBaseClassifier;
+ int numAllWeakClassifier;
+ int numWeakClassifier;
+ int iterInit;
+ BaseClassifier** baseClassifier;
+ std::vector<float> alpha;
+ cv::Size patchSize;
+
+ bool useFeatureExchange;
+
+ //StrongClassifierDirectSelection
+ std::vector<bool> m_errorMask;
+ std::vector<float> m_errors;
+ std::vector<float> m_sumErrors;
+
+ Detector* detector;
+ Rect ROI;
+
+ int replacedClassifier;
+ int swappedClassifier;
+};
+
+class BaseClassifier
+{
+ public:
+
+ BaseClassifier( int numWeakClassifier, int iterationInit );
+ BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls );
+
+ WeakClassifierHaarFeature** getReferenceWeakClassifier()
+ {
+ return weakClassifier;
+ }
+ ;
+ void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask );
+ int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors );
+ int computeReplaceWeakestClassifier( const std::vector<float> & errors );
+ void replaceClassifierStatistic( int sourceIndex, int targetIndex );
+ int getIdxOfNewWeakClassifier()
+ {
+ return m_idxOfNewWeakClassifier;
+ }
+ ;
+ int eval( const Mat& image );
+ virtual ~BaseClassifier();
+ float getError( int curWeakClassifier );
+ void getErrors( float* errors );
+ int getSelectedClassifier() const;
+ void replaceWeakClassifier( int index );
+
+ protected:
+
+ void generateRandomClassifier();
+ WeakClassifierHaarFeature** weakClassifier;
+ bool m_referenceWeakClassifier;
+ int m_numWeakClassifier;
+ int m_selectedClassifier;
+ int m_idxOfNewWeakClassifier;
+ std::vector<float> m_wCorrect;
+ std::vector<float> m_wWrong;
+ int m_iterationInit;
+
+};
+
+class EstimatedGaussDistribution
+{
+ public:
+
+ EstimatedGaussDistribution();
+ EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma );
+ virtual ~EstimatedGaussDistribution();
+ void update( float value ); //, float timeConstant = -1.0);
+ float getMean();
+ float getSigma();
+ void setValues( float mean, float sigma );
+
+ private:
+
+ float m_mean;
+ float m_sigma;
+ float m_P_mean;
+ float m_P_sigma;
+ float m_R_mean;
+ float m_R_sigma;
+};
+
+class WeakClassifierHaarFeature
+{
+
+ public:
+
+ WeakClassifierHaarFeature();
+ virtual ~WeakClassifierHaarFeature();
+
+ bool update( float value, int target );
+ int eval( float value );
+
+ private:
+
+ float sigma;
+ float mean;
+ ClassifierThreshold* m_classifier;
+
+ void getInitialDistribution( EstimatedGaussDistribution *distribution );
+ void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples );
+
+};
+
+class Detector
+{
+ public:
+
+ Detector( StrongClassifierDirectSelection* classifier );
+ virtual
+ ~Detector( void );
+
+ void
+ classifySmooth( const std::vector<Mat>& image, float minMargin = 0 );
+
+ int
+ getNumDetections();
+ float
+ getConfidence( int patchIdx );
+ float
+ getConfidenceOfDetection( int detectionIdx );
+
+ float getConfidenceOfBestDetection()
+ {
+ return m_maxConfidence;
+ }
+ ;
+ int
+ getPatchIdxOfBestDetection();
+
+ int
+ getPatchIdxOfDetection( int detectionIdx );
+
+ const std::vector<int> &
+ getIdxDetections() const
+ {
+ return m_idxDetections;
+ }
+ ;
+ const std::vector<float> &
+ getConfidences() const
+ {
+ return m_confidences;
+ }
+ ;
+
+ const cv::Mat &
+ getConfImageDisplay() const
+ {
+ return m_confImageDisplay;
+ }
+
+ private:
+
+ void
+ prepareConfidencesMemory( int numPatches );
+ void
+ prepareDetectionsMemory( int numDetections );
+
+ StrongClassifierDirectSelection* m_classifier;
+ std::vector<float> m_confidences;
+ int m_sizeConfidences;
+ int m_numDetections;
+ std::vector<int> m_idxDetections;
+ int m_sizeDetections;
+ int m_idxBestDetection;
+ float m_maxConfidence;
+ cv::Mat_<float> m_confMatrix;
+ cv::Mat_<float> m_confMatrixSmooth;
+ cv::Mat_<unsigned char> m_confImageDisplay;
+};
+
+class ClassifierThreshold
+{
+ public:
+
+ ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples );
+ virtual ~ClassifierThreshold();
+
+ void update( float value, int target );
+ int eval( float value );
+
+ void* getDistribution( int target );
+
+ private:
+
+ EstimatedGaussDistribution* m_posSamples;
+ EstimatedGaussDistribution* m_negSamples;
+
+ float m_threshold;
+ int m_parity;
+};
+
+//! @}
+
+} /* namespace cv */
+
+#endif