1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ONLINEBOOSTING_HPP__
#define __OPENCV_ONLINEBOOSTING_HPP__
#include "opencv2/core.hpp"
namespace cv
{
//! @addtogroup tracking
//! @{
//TODO based on the original implementation
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
class BaseClassifier;
class WeakClassifierHaarFeature;
class EstimatedGaussDistribution;
class ClassifierThreshold;
class Detector;
class StrongClassifierDirectSelection
{
public:
StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit =
0 );
virtual ~StrongClassifierDirectSelection();
void initBaseClassifier();
bool update( const Mat& image, int target, float importance = 1.0 );
float eval( const Mat& response );
std::vector<int> getSelectedWeakClassifier();
float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx );
int getNumBaseClassifier();
Size getPatchSize() const;
Rect getROI() const;
bool getUseFeatureExchange() const;
int getReplacedClassifier() const;
void replaceWeakClassifier( int idx );
int getSwappedClassifier() const;
private:
//StrongClassifier
int numBaseClassifier;
int numAllWeakClassifier;
int numWeakClassifier;
int iterInit;
BaseClassifier** baseClassifier;
std::vector<float> alpha;
cv::Size patchSize;
bool useFeatureExchange;
//StrongClassifierDirectSelection
std::vector<bool> m_errorMask;
std::vector<float> m_errors;
std::vector<float> m_sumErrors;
Detector* detector;
Rect ROI;
int replacedClassifier;
int swappedClassifier;
};
class BaseClassifier
{
public:
BaseClassifier( int numWeakClassifier, int iterationInit );
BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls );
WeakClassifierHaarFeature** getReferenceWeakClassifier()
{
return weakClassifier;
}
;
void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask );
int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors );
int computeReplaceWeakestClassifier( const std::vector<float> & errors );
void replaceClassifierStatistic( int sourceIndex, int targetIndex );
int getIdxOfNewWeakClassifier()
{
return m_idxOfNewWeakClassifier;
}
;
int eval( const Mat& image );
virtual ~BaseClassifier();
float getError( int curWeakClassifier );
void getErrors( float* errors );
int getSelectedClassifier() const;
void replaceWeakClassifier( int index );
protected:
void generateRandomClassifier();
WeakClassifierHaarFeature** weakClassifier;
bool m_referenceWeakClassifier;
int m_numWeakClassifier;
int m_selectedClassifier;
int m_idxOfNewWeakClassifier;
std::vector<float> m_wCorrect;
std::vector<float> m_wWrong;
int m_iterationInit;
};
class EstimatedGaussDistribution
{
public:
EstimatedGaussDistribution();
EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma );
virtual ~EstimatedGaussDistribution();
void update( float value ); //, float timeConstant = -1.0);
float getMean();
float getSigma();
void setValues( float mean, float sigma );
private:
float m_mean;
float m_sigma;
float m_P_mean;
float m_P_sigma;
float m_R_mean;
float m_R_sigma;
};
class WeakClassifierHaarFeature
{
public:
WeakClassifierHaarFeature();
virtual ~WeakClassifierHaarFeature();
bool update( float value, int target );
int eval( float value );
private:
float sigma;
float mean;
ClassifierThreshold* m_classifier;
void getInitialDistribution( EstimatedGaussDistribution *distribution );
void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples );
};
class Detector
{
public:
Detector( StrongClassifierDirectSelection* classifier );
virtual
~Detector( void );
void
classifySmooth( const std::vector<Mat>& image, float minMargin = 0 );
int
getNumDetections();
float
getConfidence( int patchIdx );
float
getConfidenceOfDetection( int detectionIdx );
float getConfidenceOfBestDetection()
{
return m_maxConfidence;
}
;
int
getPatchIdxOfBestDetection();
int
getPatchIdxOfDetection( int detectionIdx );
const std::vector<int> &
getIdxDetections() const
{
return m_idxDetections;
}
;
const std::vector<float> &
getConfidences() const
{
return m_confidences;
}
;
const cv::Mat &
getConfImageDisplay() const
{
return m_confImageDisplay;
}
private:
void
prepareConfidencesMemory( int numPatches );
void
prepareDetectionsMemory( int numDetections );
StrongClassifierDirectSelection* m_classifier;
std::vector<float> m_confidences;
int m_sizeConfidences;
int m_numDetections;
std::vector<int> m_idxDetections;
int m_sizeDetections;
int m_idxBestDetection;
float m_maxConfidence;
cv::Mat_<float> m_confMatrix;
cv::Mat_<float> m_confMatrixSmooth;
cv::Mat_<unsigned char> m_confImageDisplay;
};
class ClassifierThreshold
{
public:
ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples );
virtual ~ClassifierThreshold();
void update( float value, int target );
int eval( float value );
void* getDistribution( int target );
private:
EstimatedGaussDistribution* m_posSamples;
EstimatedGaussDistribution* m_negSamples;
float m_threshold;
int m_parity;
};
//! @}
} /* namespace cv */
#endif
|