diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /sci_gateway1/cpp/opencv_predict.cpp | |
download | FOSSEE_Image_Processing_Toolbox-master.tar.gz FOSSEE_Image_Processing_Toolbox-master.tar.bz2 FOSSEE_Image_Processing_Toolbox-master.zip |
Diffstat (limited to 'sci_gateway1/cpp/opencv_predict.cpp')
-rw-r--r-- | sci_gateway1/cpp/opencv_predict.cpp | 222 |
1 files changed, 222 insertions, 0 deletions
diff --git a/sci_gateway1/cpp/opencv_predict.cpp b/sci_gateway1/cpp/opencv_predict.cpp new file mode 100644 index 0000000..51b9710 --- /dev/null +++ b/sci_gateway1/cpp/opencv_predict.cpp @@ -0,0 +1,222 @@ +/*************************************************** +Author : Rohit Suri +***************************************************/ +#include <iostream> +#include <opencv2/opencv.hpp> +#include <opencv2/nonfree/nonfree.hpp> +#include <opencv2/ml/ml.hpp> + +using namespace std; +using namespace cv; + +extern "C" +{ + #include "api_scilab.h" + #include "Scierror.h" + #include "BOOL.h" + #include <localization.h> + #include "sciprint.h" + #include "../common.h" + int opencv_predict(char *fname, unsigned long fname_len) + { + // Error management variables + SciErr sciErr; + + //------Local variables------// + int upright = 1; + Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased"); + Ptr<DescriptorExtractor> extractor = new SurfDescriptorExtractor(1, 4, 2, 1, int(upright)); + BOWImgDescriptorExtractor bowDE(extractor, matcher); + SurfFeatureDetector detector(1, 4, 2, 1, int(upright)); + char *classifierLocation = NULL; + Mat dictionary,features; + double response; + vector<KeyPoint> keyPoints; + CvSVM svm; + int dictionarySize; + int *piAddr = NULL; + int *piChild = NULL; + int iRows, iCols; + char **pstData = NULL; + int *piLen = NULL; + char **classifierDescription = NULL; + int classifierDescriptionCount; + char *bagOfFeaturesLocation = NULL; + int descriptionCount; + Mat input; + //------Check number of parameters------// + CheckInputArgument(pvApiCtx, 2, 2); + CheckOutputArgument(pvApiCtx, 1, 1); + + //------Get input arguments------// + retrieveImage(input,2); + sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + if(!isListType(pvApiCtx, piAddr)) + { + Scierror(999, "Error: The input argument #1 is not of type classifier.\n"); + return 0; + } + + // Extracting object type and checking if type is classifier + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 1, &iRows, &iCols, NULL, NULL); + if(sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + piLen = (int*)malloc(sizeof(int) * iRows * iCols); + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 1, &iRows, &iCols, piLen, NULL); + if(sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + pstData = (char**)malloc(sizeof(char*) * iRows * iCols); + + for(int iter = 0 ; iter < iRows * iCols ; iter++) + { + pstData[iter] = (char*)malloc(sizeof(char) * (piLen[iter] + 1));//+ 1 for null termination + } + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 1, &iRows, &iCols, piLen, pstData); + if(sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + if(!(strcmp(pstData[0],"classifier")==0)) + { + Scierror(999, "Error: The input argument #1 is not of type classifier.\n"); + return 0; + } + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 2, &iRows, &iCols, NULL, NULL); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + piLen = (int*) malloc(sizeof(int) * iRows * iCols); + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 2, &iRows, &iCols, piLen, NULL); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + pstData = (char**) malloc(sizeof(char*) * iRows * iCols); + for(int iterPstData = 0; iterPstData < iRows * iCols; iterPstData++) + { + pstData[iterPstData] = (char*) malloc(sizeof(char) * piLen[iterPstData] + 1); + } + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 2, &iRows, &iCols, piLen, pstData); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + if(iRows!=1 || iCols!=1) + { + Scierror(999, "1x1 Matrix expected for classifier argument."); + return 0; + } + classifierLocation = pstData[0]; + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 3, &iRows, &iCols, NULL, NULL); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + piLen = (int*) malloc(sizeof(int) * iRows * iCols); + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 3, &iRows, &iCols, piLen, NULL); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + pstData = (char**) malloc(sizeof(char*) * iRows * iCols); + for(int iterPstData = 0; iterPstData < iRows * iCols; iterPstData++) + { + pstData[iterPstData] = (char*) malloc(sizeof(char) * piLen[iterPstData] + 1); + } + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 3, &iRows, &iCols, piLen, pstData); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + if(iRows!=1 || iCols!=1) + { + Scierror(999, "1x1 Matrix expected for bagOfFeatures argument."); + return 0; + } + bagOfFeaturesLocation = pstData[0]; + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 4, &iRows, &iCols, NULL, NULL); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + piLen = (int*) malloc(sizeof(int) * iRows * iCols); + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 4, &iRows, &iCols, piLen, NULL); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + + classifierDescription = (char**) malloc(sizeof(char*) * iRows * iCols); + for(int iterPstData = 0; iterPstData < iRows * iCols; iterPstData++) + { + classifierDescription[iterPstData] = (char*) malloc(sizeof(char) * piLen[iterPstData] + 1); + } + + sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 4, &iRows, &iCols, piLen, classifierDescription); + if (sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + //------Actual processing------// + FileStorage fs(bagOfFeaturesLocation, FileStorage::READ); + fs["dictionary"] >> dictionary; + fs.release(); + dictionarySize = dictionary.rows; + bowDE.setVocabulary(dictionary); + svm.load(classifierLocation); + detector.detect(input, keyPoints); + bowDE.compute(input, keyPoints, features); + response = svm.predict(features); + //------Create output arguments------// + sciErr = createMatrixOfString(pvApiCtx, nbInputArgument(pvApiCtx)+1, 1, 1, &classifierDescription[(int)response]); + if(sciErr.iErr) + { + printError(&sciErr, 0); + return 0; + } + //------Return Arguments------// + AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx)+1; + ReturnArguments(pvApiCtx); + return 0; + } + /* ==================================================================== */ +} |