1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/***************************************************
Author : Rohit Suri
***************************************************/
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
extern "C"
{
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include "sciprint.h"
#include "../common.h"
int opencv_predict(char *fname, unsigned long fname_len)
{
// Error management variables
SciErr sciErr;
//------Local variables------//
int upright = 1;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
Ptr<DescriptorExtractor> extractor = new SurfDescriptorExtractor(1, 4, 2, 1, int(upright));
BOWImgDescriptorExtractor bowDE(extractor, matcher);
SurfFeatureDetector detector(1, 4, 2, 1, int(upright));
char *classifierLocation = NULL;
Mat dictionary,features;
double response;
vector<KeyPoint> keyPoints;
CvSVM svm;
int dictionarySize;
int *piAddr = NULL;
int *piChild = NULL;
int iRows, iCols;
char **pstData = NULL;
int *piLen = NULL;
char **classifierDescription = NULL;
int classifierDescriptionCount;
char *bagOfFeaturesLocation = NULL;
int descriptionCount;
Mat input;
//------Check number of parameters------//
CheckInputArgument(pvApiCtx, 2, 2);
CheckOutputArgument(pvApiCtx, 1, 1);
//------Get input arguments------//
retrieveImage(input,2);
sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
if(!isListType(pvApiCtx, piAddr))
{
Scierror(999, "Error: The input argument #1 is not of type classifier.\n");
return 0;
}
// Extracting object type and checking if type is classifier
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 1, &iRows, &iCols, NULL, NULL);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
piLen = (int*)malloc(sizeof(int) * iRows * iCols);
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 1, &iRows, &iCols, piLen, NULL);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
pstData = (char**)malloc(sizeof(char*) * iRows * iCols);
for(int iter = 0 ; iter < iRows * iCols ; iter++)
{
pstData[iter] = (char*)malloc(sizeof(char) * (piLen[iter] + 1));//+ 1 for null termination
}
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 1, &iRows, &iCols, piLen, pstData);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
if(!(strcmp(pstData[0],"classifier")==0))
{
Scierror(999, "Error: The input argument #1 is not of type classifier.\n");
return 0;
}
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 2, &iRows, &iCols, NULL, NULL);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
piLen = (int*) malloc(sizeof(int) * iRows * iCols);
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 2, &iRows, &iCols, piLen, NULL);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
pstData = (char**) malloc(sizeof(char*) * iRows * iCols);
for(int iterPstData = 0; iterPstData < iRows * iCols; iterPstData++)
{
pstData[iterPstData] = (char*) malloc(sizeof(char) * piLen[iterPstData] + 1);
}
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 2, &iRows, &iCols, piLen, pstData);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
if(iRows!=1 || iCols!=1)
{
Scierror(999, "1x1 Matrix expected for classifier argument.");
return 0;
}
classifierLocation = pstData[0];
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 3, &iRows, &iCols, NULL, NULL);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
piLen = (int*) malloc(sizeof(int) * iRows * iCols);
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 3, &iRows, &iCols, piLen, NULL);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
pstData = (char**) malloc(sizeof(char*) * iRows * iCols);
for(int iterPstData = 0; iterPstData < iRows * iCols; iterPstData++)
{
pstData[iterPstData] = (char*) malloc(sizeof(char) * piLen[iterPstData] + 1);
}
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 3, &iRows, &iCols, piLen, pstData);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
if(iRows!=1 || iCols!=1)
{
Scierror(999, "1x1 Matrix expected for bagOfFeatures argument.");
return 0;
}
bagOfFeaturesLocation = pstData[0];
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 4, &iRows, &iCols, NULL, NULL);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
piLen = (int*) malloc(sizeof(int) * iRows * iCols);
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 4, &iRows, &iCols, piLen, NULL);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
classifierDescription = (char**) malloc(sizeof(char*) * iRows * iCols);
for(int iterPstData = 0; iterPstData < iRows * iCols; iterPstData++)
{
classifierDescription[iterPstData] = (char*) malloc(sizeof(char) * piLen[iterPstData] + 1);
}
sciErr = getMatrixOfStringInList(pvApiCtx, piAddr, 4, &iRows, &iCols, piLen, classifierDescription);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//------Actual processing------//
FileStorage fs(bagOfFeaturesLocation, FileStorage::READ);
fs["dictionary"] >> dictionary;
fs.release();
dictionarySize = dictionary.rows;
bowDE.setVocabulary(dictionary);
svm.load(classifierLocation);
detector.detect(input, keyPoints);
bowDE.compute(input, keyPoints, features);
response = svm.predict(features);
//------Create output arguments------//
sciErr = createMatrixOfString(pvApiCtx, nbInputArgument(pvApiCtx)+1, 1, 1, &classifierDescription[(int)response]);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//------Return Arguments------//
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx)+1;
ReturnArguments(pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|