summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/opencv_adapthisteq.cpp
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /sci_gateway/cpp/opencv_adapthisteq.cpp
downloadFOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip
First CommitHEADmaster
Diffstat (limited to 'sci_gateway/cpp/opencv_adapthisteq.cpp')
-rw-r--r--sci_gateway/cpp/opencv_adapthisteq.cpp201
1 files changed, 201 insertions, 0 deletions
diff --git a/sci_gateway/cpp/opencv_adapthisteq.cpp b/sci_gateway/cpp/opencv_adapthisteq.cpp
new file mode 100644
index 0000000..334f529
--- /dev/null
+++ b/sci_gateway/cpp/opencv_adapthisteq.cpp
@@ -0,0 +1,201 @@
+/*************************************************************************************
+Author : Yash S. Bhalgat
+***************************************************************************************
+---------- Performs Contrast Limited Adaptive Histogram Equalisation -------------
+Usage :
+ 1) output_img = adapthisteq(input_img);
+ In this usage, the image itself is used as the guidance image.
+
+ 2) output_img = adapthisteq(input_img, clip_limit);
+Example :
+ img = imread("lena.jpg");
+ imshow(img);
+ output_img = adapthisteq(img, img, 9);
+ imshow(output_img);
+***********************************************************************/
+
+#include <numeric>
+#include "opencv2/core/core.hpp"
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/opencv.hpp"
+#include <iostream>
+#include <algorithm> // std::max
+
+using namespace cv;
+using namespace std;
+
+extern "C"
+{
+ #include "api_scilab.h"
+ #include "Scierror.h"
+ #include "BOOL.h"
+ #include <localization.h>
+ #include <sciprint.h>
+ #include "../common.h"
+
+
+
+ int opencv_adapthisteq(char *fname, unsigned long fname_len)
+ {
+
+ SciErr sciErr;
+ int intErr = 0;
+ int iRows=0,iCols=0;
+ int *piAddr2 = NULL;
+ int i,j,k;
+ double clip_limit;
+
+ //Default clip limit
+ clip_limit = 0.001;
+
+ //checking input argument
+ CheckInputArgument(pvApiCtx, 1, 2);
+ CheckOutputArgument(pvApiCtx, 1, 1);
+
+ int inputarg = *getNbInputArgument(pvApiCtx);
+
+
+ Mat input_img;
+ retrieveImage(input_img,1);
+
+ if(inputarg == 2){
+ //for value of clip_limit
+ sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2);
+ if (sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ intErr = getScalarDouble(pvApiCtx, piAddr2, &clip_limit);
+ if(intErr)
+ return intErr;
+ }
+
+
+ //Main function
+ //cvtColor(input_img, input_img, CV_RGB2GRAY);
+
+ float C[256];
+
+ int row = input_img.rows;
+ int col = input_img.cols;
+
+ int window_x = 90;
+ int window_y = 90;
+
+ int min_x, min_y, max_x, max_y;
+ Mat window_matrix;
+
+ //float clip_limit = 0.001;
+
+ int histSize = 256; //from 0 to 255
+ float range[] = { 0, 256 } ;
+ const float* histRange = { range };
+
+ Mat H;
+ Mat output_img = Mat::zeros(input_img.size(), input_img.type());
+
+ if(input_img.channels()==1){
+ for(int i=0; i<row; i++){
+ for(int j=0; j<col; j++){
+ min_x = max(0,i-window_x);
+ min_y = max(0,j-window_y);
+ max_x = min(row-1,i+window_x);
+ max_y = min(col-1,j+window_y);
+ window_matrix = input_img(Range(min_x, max_x), Range(min_y, max_y));
+ //window_matrix = inputImage(min_x:max_x,min_y:max_y);
+
+ if(input_img.at<uchar>(i,j)==0) output_img.at<uchar>(i,j) =0;
+ else{
+ calcHist(&window_matrix, 1, 0, Mat(), H, 1, &histSize, &histRange);
+
+ int N = window_matrix.rows;
+ int M = window_matrix.cols;
+ H=H/(N*M);
+ // cout<<H<<endl;
+
+ for(int z=0; z<256; z++){
+ if(H.at<float>(0,z) > clip_limit) H.at<float>(0,z) = clip_limit;
+ }
+
+ float contrastArea = 1.0 - cv::sum(H).val[0];
+ float height = contrastArea / 256.00;
+
+ H = H + height;
+ //cout<<cv::sum(H).val[0]<<endl;
+ C[0] = H.at<float>(0,0)*255;
+ for(int k=1; k<256; k++){
+ C[k]= C[k-1] + H.at<float>(0,k)*255;
+ }
+ //cout<<C[255]<<endl;
+ output_img.at<uchar>(i,j) = C[input_img.at<uchar>(i,j)];
+ }
+ }
+ }
+ }
+ else if(input_img.channels()==3){
+ vector<cv::Mat> Ichannels;
+ split(input_img, Ichannels);
+
+ for(int d=0; d<3; d++){
+ for(int i=0; i<row; i++){
+ for(int j=0; j<col; j++){
+ min_x = max(0,i-window_x);
+ min_y = max(0,j-window_y);
+ max_x = min(row-1,i+window_x);
+ max_y = min(col-1,j+window_y);
+
+ window_matrix = Ichannels[d](Range(min_x, max_x), Range(min_y, max_y));
+
+ if(Ichannels[d].at<uchar>(i,j)==0) output_img.at<Vec3b>(i,j)[d] =0;
+ else{
+ calcHist(&window_matrix, 1, 0, Mat(), H, 1, &histSize, &histRange);
+
+ int N = window_matrix.rows;
+ int M = window_matrix.cols;
+ H=H/(N*M);
+ // cout<<H<<endl;
+
+ for(int z=0; z<256; z++){
+ if(H.at<float>(0,z) > clip_limit) H.at<float>(0,z) = clip_limit;
+ }
+
+ float contrastArea = 1.0 - cv::sum(H).val[0];
+ float height = contrastArea / 256.00;
+
+ H = H + height;
+ //cout<<cv::sum(H).val[0]<<endl;
+ C[0] = H.at<float>(0,0)*255;
+ for(int k=1; k<256; k++){
+ C[k]= C[k-1] + H.at<float>(0,k)*255;
+ }
+ //cout<<C[255]<<endl;
+ output_img.at<Vec3b>(i,j)[d] = C[Ichannels[d].at<uchar>(i,j)];
+ }
+ }
+ }
+ }
+
+
+ }
+
+
+
+ //returning image
+ string tempstring = type2str(output_img.type());
+ char *checker;
+ checker = (char *)malloc(tempstring.size() + 1);
+ memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
+ returnImage(checker,output_img,1);
+ free(checker);
+
+ //Assigning the list as the Output Variable
+ AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
+ //Returning the Output Variables as arguments to the Scilab environment
+ ReturnArguments(pvApiCtx);
+ return 0;
+
+ }
+/* ==================================================================== */
+}
+